2024年度第1回K塾記述模試数学Ⅲ型全問解説 - 質問解決D.B.(データベース)

2024年度第1回K塾記述模試数学Ⅲ型全問解説

問題文全文(内容文):
【1】
(1) 不等式$2| x-2|-x≦$4を解け。
(2) 関数$f(x)=\log_{ 2 } (x-1)+2\log_{ 4 } (3-2x)$の最大値を求めよ。
(3) 曲線$y=x^3+2x^2$とx軸によって囲まれた部分の面積を求めよ。
(4) $\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{4k^2-1}$をnを用いて表せ。
(5) $OA=2,OB=3,∠AOB=60°$である三角形$OAB$において辺$AB$を$1:3$に内分する点を$C$とする。
(ⅰ) $OC$を$OA,OB$を用いて表せ。
(ⅱ) $|OC|$を求めよ。


【2】
1個のサイコロを繰り返し振る。$k$回目($k=1,2,3,…$)に奇数の目が出たら、その目の数を$x_k$とし、偶数の目が出たら、その目の数を2で割った商を$x_k$とする。 $S_n=x_1+x_2+x_3+…+x_n$ ($n=1,2,3,…$) と定める。
(1) $S_1=3$ である確率、$S_2=6$ である確率をそれぞれ求めよ。
(2) $S_4=12$ である確率を求めよ。
(3) $S_4=12$ であったとき、$S_2=6$ である確率を求めよ。

【3】
$A$を正の定数とし、$0\leqq\theta\lt 2\pi$において、$\theta$の方程式 $a\sin2\theta-2a^2\cos\theta-\sin\theta+a=0$  …(*) を考える。
(1) $a=1$のとき、(*)を解け。
(2) (*)がちょうど3つの解をもつような$a$の値を求めよ。
(3) (*)がちょうど4つの解をもつとする。4つの解のうち、最小のものを$\alpha$、最大のものを$\beta$とするとき、$\alpha+\beta$の値を求めよ。


【4】
$xy$平面上において、連立不等式 $x\geqq 0,y\geqq 0,x+y\leqq 1$ で表された領域を$D$とする。
(1) 点P($x,y$)が$D$上を動くとき $X=2x-6y,Y=5x+y$ によって定められる点$Q$($X,Y$)が存在する領域を$XY$平面上図示せよ。
(2) $a$を実数の定数とする。点$P$($x,y$)が$D$上を動くとき   $(2x-6y-a)^2+(5x+y)^2$ の最大値を$a$を用いて表せ。


【5】
平面上に直線lとそれに接する半径1の円$C_1$がある。$C_1$の右側にあり、$C_1$と$l$に接する円を$C_2$とする。 $C_n$の中心を$A_n$,半径を$r_n,C_n$と$l$の接点を$B_n$とすると $A_nB_n:A_nA_(n+1)=1:p$ が成り立っている。ただし、$p$は$1\lt p\lt 2$を満たす定数とする。
(1) $r_(n+1)$を$r_n$,$p$を用いて表し、$r_n$求めよ。 また、$Σr_n=3$となるような$p$の値を求めよ。
(2) $p$を(1)で求めた値とする。
(ⅰ) $\ B_nB_{n+1}$を求めよ
(ⅱ) 極限値$\displaystyle\lim_{n\to\infty}{B_1B_n}$を求めよ
(ⅲ) $\alpha=\displaystyle\lim_{n\to\infty}{B_1B_n}$とし、$\beta$を正の定数とする。   極限$\displaystyle\lim_{n\to\infty}(B1Bn-\alpha)\beta n$が0以外の値に収束するよう$\beta$の値と、そのときの極限値を求めよ。


【6】
$a$を正の定数とし、$i$を虚数単位とする。複素数$z$に関する2つの方程式 $z^3=-8i$…①   $z^2-2az+8=0$…②   を考える。
(1) ①を満たす$z$について、$z$の極形式を $z=r(\cos\theta+i\sin\theta)r\gt 0,0\leqq\theta\lt 2\pi$ と表すとき、$r,\theta$の値を求めよ。
(2) ②が異なる2つの虚数解$\alpha,\beta$を持ち、複素数平面上で3点$0,\alpha,\beta$を頂点とする三角形の面積が4であるとする。ただし、($\alpha$の虚部)>($\beta$の虚部)。 (ⅰ) $a$の値と$\alpha,\beta$を求めよ。
(ⅱ)偏角を0以上$2\pi$未満の値で考えるとき,①の解のうち偏角が最大であるものを$γ$とする。複素数平面上で3点$\alpha,\beta,γ^n$を頂点とする三角形の内部に原点が存在するような正の整数$n$を求めよ。
チャプター:

0:00 動画概要
0:35 大問1(1)
1:44 大問1(2)
4:27 大問1(3)
5:39 大問1(4)
7:13 大問1(5)
9:45 大問2(1)
13:20 大問2(2)
16:34 大問2(3)
19:15 大問3(1)
20:23 大問3(2)
25:36 大問3(3)
32:12 大問4(1)
34:33 大問4(2)
40:25 大問5(1)
44:20 大問5(2)
51:00 大問6(1)
53:52 大問6(2)

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【1】
(1) 不等式$2| x-2|-x≦$4を解け。
(2) 関数$f(x)=\log_{ 2 } (x-1)+2\log_{ 4 } (3-2x)$の最大値を求めよ。
(3) 曲線$y=x^3+2x^2$とx軸によって囲まれた部分の面積を求めよ。
(4) $\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{4k^2-1}$をnを用いて表せ。
(5) $OA=2,OB=3,∠AOB=60°$である三角形$OAB$において辺$AB$を$1:3$に内分する点を$C$とする。
(ⅰ) $OC$を$OA,OB$を用いて表せ。
(ⅱ) $|OC|$を求めよ。


【2】
1個のサイコロを繰り返し振る。$k$回目($k=1,2,3,…$)に奇数の目が出たら、その目の数を$x_k$とし、偶数の目が出たら、その目の数を2で割った商を$x_k$とする。 $S_n=x_1+x_2+x_3+…+x_n$ ($n=1,2,3,…$) と定める。
(1) $S_1=3$ である確率、$S_2=6$ である確率をそれぞれ求めよ。
(2) $S_4=12$ である確率を求めよ。
(3) $S_4=12$ であったとき、$S_2=6$ である確率を求めよ。

【3】
$A$を正の定数とし、$0\leqq\theta\lt 2\pi$において、$\theta$の方程式 $a\sin2\theta-2a^2\cos\theta-\sin\theta+a=0$  …(*) を考える。
(1) $a=1$のとき、(*)を解け。
(2) (*)がちょうど3つの解をもつような$a$の値を求めよ。
(3) (*)がちょうど4つの解をもつとする。4つの解のうち、最小のものを$\alpha$、最大のものを$\beta$とするとき、$\alpha+\beta$の値を求めよ。


【4】
$xy$平面上において、連立不等式 $x\geqq 0,y\geqq 0,x+y\leqq 1$ で表された領域を$D$とする。
(1) 点P($x,y$)が$D$上を動くとき $X=2x-6y,Y=5x+y$ によって定められる点$Q$($X,Y$)が存在する領域を$XY$平面上図示せよ。
(2) $a$を実数の定数とする。点$P$($x,y$)が$D$上を動くとき   $(2x-6y-a)^2+(5x+y)^2$ の最大値を$a$を用いて表せ。


【5】
平面上に直線lとそれに接する半径1の円$C_1$がある。$C_1$の右側にあり、$C_1$と$l$に接する円を$C_2$とする。 $C_n$の中心を$A_n$,半径を$r_n,C_n$と$l$の接点を$B_n$とすると $A_nB_n:A_nA_(n+1)=1:p$ が成り立っている。ただし、$p$は$1\lt p\lt 2$を満たす定数とする。
(1) $r_(n+1)$を$r_n$,$p$を用いて表し、$r_n$求めよ。 また、$Σr_n=3$となるような$p$の値を求めよ。
(2) $p$を(1)で求めた値とする。
(ⅰ) $\ B_nB_{n+1}$を求めよ
(ⅱ) 極限値$\displaystyle\lim_{n\to\infty}{B_1B_n}$を求めよ
(ⅲ) $\alpha=\displaystyle\lim_{n\to\infty}{B_1B_n}$とし、$\beta$を正の定数とする。   極限$\displaystyle\lim_{n\to\infty}(B1Bn-\alpha)\beta n$が0以外の値に収束するよう$\beta$の値と、そのときの極限値を求めよ。


【6】
$a$を正の定数とし、$i$を虚数単位とする。複素数$z$に関する2つの方程式 $z^3=-8i$…①   $z^2-2az+8=0$…②   を考える。
(1) ①を満たす$z$について、$z$の極形式を $z=r(\cos\theta+i\sin\theta)r\gt 0,0\leqq\theta\lt 2\pi$ と表すとき、$r,\theta$の値を求めよ。
(2) ②が異なる2つの虚数解$\alpha,\beta$を持ち、複素数平面上で3点$0,\alpha,\beta$を頂点とする三角形の面積が4であるとする。ただし、($\alpha$の虚部)>($\beta$の虚部)。 (ⅰ) $a$の値と$\alpha,\beta$を求めよ。
(ⅱ)偏角を0以上$2\pi$未満の値で考えるとき,①の解のうち偏角が最大であるものを$γ$とする。複素数平面上で3点$\alpha,\beta,γ^n$を頂点とする三角形の内部に原点が存在するような正の整数$n$を求めよ。
備考:■板書修正
0:35頃から解説する大問1(1)ですが
板書に誤りがございます。

ホワイトボードでは
x≧2→2(x-2)-x≧4
x2→2(2-x)-x≧4 となっておりますが、
正しくは、
x≧2→2(x-2)-x≦4
x<2→2(2-x)-x≦4 となります。

■問題文修正
34:34頃から解説する大問4(2)ですが、画面左下に表示される問題文に誤りがございます。下から2行目の(5x+2y)²ですが、正しくは(5x+y)²となります。
画面右上のホワイトボードでは(5x+y)²として解説しておりますので、解説・解答に修正はございません。
投稿日:2024.05.19

<関連動画>

【数C】ベクトル:2020年第2回高2K塾記述模試の第7問を解いてみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
この動画を見る 

【数学】2022年度 第2回 K塾記述高2模試 全問解説(ベクトルはおまけ)

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2022年度第2回K塾記述高2模試全問解説動画です!
この動画を見る 

【数A】高2生必見!!2020年度 第2回 K塾高2模試 大問3_確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。
この動画を見る 

【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問5_三角関数 (※(*)式に訂正あり)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の整数とする。$\theta$の方程式$ \sin(a\theta)+\sqrt3\cos(a\theta)=1$ ・・・(*) がある。
(1)$\sin(\theta+\dfrac{\pi}{3}$)を$\sin\theta, \cos\theta$の式で表せ。
(2)$a=1$のとき、(*)を$0\leqq\theta\lt 2\pi$において表せ。
(3)(*)の$\theta\geqq 0$を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。$0\leqq\lt 2\pi$において、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
この動画を見る 

【数学】2023年度 第2回 K塾高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1問:小問集合
(1)$(3x-1)(9x^2+3x+1)$を展開せよ。
(2)$\displaystyle \frac{x-1}{1+\frac{1}{x+2}}$を簡単にせよ。
(3)2次関数$y=2x^2-x+1$の最小値を求めよ。
(4)iを虚数単位とする。$\displaystyle \frac{(2+i)^2}{i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=4,BC=\sqrt{7},CA=\sqrt{3}$である△ABCにおいて、cos∠BACの値と△ABCの面積を求めよ。
(6)a,a,b,b,c,cの6文字を1列に並べるとき、並べ方は全部で何通りか。このうち、a,aが隣り合わないような並べ方は何通りか。

第2問-i:2次不等式
aは正の定数とする。実数xについての2つの不等式 $ax^2+(2a-5)x-2a+1<0$・・・①、$│2x-3│≦3$・・・②がある。
(1)a=2のとき、①を解け。
(2)②を解け。
(3)②を満たすすべての実数xに対して、①が成り立つようなaの値の範囲を求めよ。

第2問-ii:図形と方程式
xy平面上に、2つの円$C₁:x^2+y^2-10x-a^2-4a+21=0、C2:x^2+y^2=5$がある。また、C₂上の点P(2,1)におけるC₂の 接線を$l$とする。ただし、aはa>-2を満たす定数とする。
(1)a=1のとき、C₁の中心の座標と半径を求めよ。
(2)$l$の方程式を求めよ。
(3)C₁と$l$が接するようなaの値を求めよ。また、このとき のC1と$l$の接点をQとするとき、線分PQの長さを求めよ。

第3問:複素数と方程式
a,bを実数の定数とする。xの3次式$ f(x)=x^3+(a+3)x^2+(3a+b)x+3b$ と、3次方程式 $f(x)=0$・・・(*)がある。
(1)f(-3)を求めよ。
(2)a=-1かつb=1のとき、(*)を解け。
(3)(*)が異なる2つの虚数解をもつためのa,bの条件を求めよ。
(4)a,bが(3)で求めた条件を満たすとし、(*)の異なる2つの虚数解をα,βとする。このとき、$α^2,β^2$がともに(*)の解となるようなa,bの値の組(a,b)をすべて求めよ。

第4問:確率
5枚のカード1,1,2,2,3が入った袋が1つあり、次の操作(I)を考える。
操作(I): 袋から2枚のカードを同時に取り出し、取り出した2枚のカードに書かれた数の和をXとし、取り出した2枚のカードを袋に戻す。
(1)操作(I)を1回行う。
(i)X=2となる確率を求めよ。
(ii)X=4となる確率を求めよ。
さらに、1枚の硬貨を用意し、操作(I)で定まるXの値に対して、次の操作(II)を考える。
操作(II):1枚の硬貨を投げ、表が出たらY=X+1とし、裏が出たらY=Xとする。
操作(I), (II)を(I), (II)の順に1回ずつ行うことを操作Tとする。
(2)操作Tを1回行う。
(i)Y=4となる確率を求めよ。
(ii)Yの期待値を求めよ。
(3)操作Tを3回繰り返すとき、3回のYの値の合計が15になる確率を求めよ。

第5問:三角関数
aを実数の定数とする。θの方程式$cos2θ+2(5a-1)sinθ-12a^2+6a-1=0$・・・(*)がある
(1)cos2θをsinθを用いて表せ。
(2)a=0とする。0≦θ<2πにおいて、(*)を解け。
(3)0≦θ<2πにおいて、(*)が異なる4個の解をもつとする。
(i)aのとり得る値の範囲を求めよ。
(ii)0≦θ<2πにおける(*)の4個の解を、小さい順にθ₁,θ₂,θ₃,θ₄とする。(θ₂-θ₁)+(θ₄-θ₃)=πとなるようなaの値を求めよ。

第6問:数列
nは自然数。等差数列{a_n}があり、a₁+a₂=8,a₄+a₅=20である。また、公比が実数である等比数列{b_n}があり、
b₁+b₂=4, b₄+b₅=108である。
(1)数列{a_n}の一般項を求めよ。また、数列{a_n}の初項から第n項までの和S_nを求めよ。
(2)数列{b_n}の一般項を求めよ。
(3)数列{c_n}は、左から順に次のような項が並べられた数列である。 b₁がa₁個、b₂がa₂個、b₃がa₃個、...、b_nがa_n個、... すなわち、{c}: b₁,...,b₁, b₂,...,b₂, b₃,..,b₃,...,b_n,...,b_n,...
(i)C₂₀₂₃の値を求めよ。ただし、結果は2¹⁰⁰のように指数表示のままでよい。
(ii)$\displaystyle \sum_{k=1}^{2023}c_k$の値を求めよ。ただし、結果は$2^{100}$のように指数表示のままでよい。
この動画を見る 
PAGE TOP