地球ショートケーキは何キロカロリー? - 質問解決D.B.(データベース)

地球ショートケーキは何キロカロリー?

問題文全文(内容文):
すとぷりの曲で「地球くらいのショートケーキを食べたら」ってあるんですけど,何キロカロリーか解説していきます。
単元: #算数(中学受験)#立体図形#体積・表面積・回転体・水量・変化のグラフ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
すとぷりの曲で「地球くらいのショートケーキを食べたら」ってあるんですけど,何キロカロリーか解説していきます。
投稿日:2023.12.31

<関連動画>

算数で解くか 数学でとくか

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{array}{r}
a \ b\ c \\[-3pt]
+\ \ a\ b\ c \\[-3pt]
\underline{+\phantom{0}a\ b\ c}\\[-3pt]
c\ c\ c \\[-3pt]
\end{array}
$a= \quad b= \quad c=$
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第1問(2)〜n進法

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)nを20以上の整数とする。n進法で表したとき、$n^3$の位の数が$1,n^2$の位の数が2,
$n^1$の位の数が$3,n^0$の位の数が0である数$1230_{(n)}$を$n+1$進法で表すと$(n+1)^2$の位
の数は$\boxed{\ \ あ\ \ }$であり、$(n+1)^1$の位の数は$\boxed{\ \ い\ \ }$であり、$(n+1)^0$の位の数は$\boxed{\ \ う\ \ }$である。

$\boxed{\ \ あ\ \ }\ ~\ \boxed{\ \ う\ \ }$の選択肢:
$(\textrm{a})0  (\textrm{b})1  (\textrm{c})2  (\textrm{d})3$
$(\textrm{e})n-2  (\textrm{f})n-3  (\textrm{g})n-1  (\textrm{g})n$  

2021上智大学理系過去問
この動画を見る 

【中学受験問題に挑戦】 85(”大人”は頭の体操) 正六角形3つの中の三角形の面積

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積
指導講師: 算数・数学ちゃんねる
問題文全文(内容文):
三角形ABCの面積は?
※面積1cm²の正六角形が3つ並んでいる。
※図は動画内参照
この動画を見る 

【小6 算数】  小6-②③ 道のり・速さ・時間③

アイキャッチ画像
単元: #算数(中学受験)#速さ#速さその他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
小6 算数 道のり・速さ・時間③
次の問に答えよ
①400m進むのに、2分40秒かかった。分速は?
②時速45kmの車が、150km進むのにかかる時間は?
※図は動画内参照

この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第2問〜立方体の切断と位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#立体図形#立体切断#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 一辺の長さが2である立方体OADB-CFGEを考える。
$\overrightarrow{OA}$=$\overrightarrow{a}$, $\overrightarrow{OB}$=$\overrightarrow{b}$, $\overrightarrow{OC}$=$\overrightarrow{c}$とおく。辺AFの中点をM、辺BDの中点をNとし、3点O,M,Nを通る平面$\pi$で立方体を切断する。
(1)平面$\pi$は辺AF,BD以外に辺$\boxed{\ \ あ\ \ }$とその両端以外で交わる。
(2)平面$\pi$と辺$\boxed{\ \ あ\ \ }$との交点をPとすると$\overrightarrow{OP}$=$\boxed{\ \ い\ \ } \overrightarrow{a}$+$\boxed{\ \ う\ \ } \overrightarrow{b}$+$\boxed{\ \ え\ \ } \overrightarrow{c}$
(3)断面の面積は$\displaystyle\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\sqrt{\boxed{\ \ ケ\ \ }}$である。
(4)切断されてできる立体のうち、頂点Aを含むものの体積は$\displaystyle\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$である。
(5)平面$\pi$と線分CDとの交点をQとする。
(i)点Qは線分CDを$\boxed{\ \ お\ \ }$に内分する。
(ii)$\overrightarrow{OQ}$=$\boxed{\ \ か\ \ } \overrightarrow{a}$+$\boxed{\ \ き\ \ } \overrightarrow{b}$+$\boxed{\ \ く\ \ } \overrightarrow{c}$である。

$\boxed{\ \ い\ \ }~\boxed{\ \ え\ \ }$, $\boxed{\ \ か\ \ }~\boxed{\ \ く\ \ }$の選択肢
(a)0 (b)1 (c)$\frac{1}{2}$ (d)$\frac{1}{3}$ (e)$\frac{2}{3}$ (f)$\frac{1}{4}$ (g)$\frac{3}{4}$ (h)$\frac{1}{5}$ 
(i)$\frac{2}{5}$ (j)$\frac{3}{5}$ (k)$\frac{4}{5}$ (l)$\frac{1}{6}$ (m)$\frac{5}{6}$

$\boxed{\ \ お\ \ }$の選択肢
(a)1:1 (b)2:1 (c)1:2 (d)3:1 (e)1:3 (f)4:1 (g)3:2 
(h)2:3 (i)1:4 (j)5:1 (k)1:5 
この動画を見る 
PAGE TOP