問題文全文(内容文):
$\Large\boxed{2}$ 実数全体を定義域にもつ微分可能な関数$f(t)$, $g(t)$が次の6つの条件を満たしているとする。
$f'(t)$=$-f(t)g(t)$, $g'(t)$=$\left\{f(t)\right\}^2$,
$f(t)$>0, $|g(t)|$<1, $f(0)$=1, $g(0)$=0
このとき $p(t)$=$\left\{f(t)\right\}^2$+$\left\{g(t)\right\}^2$, $q(t)$=$\log\frac{1+g(t)}{1-g(t)}$ とおく。
(1)$p'(t)$を求めよ。
(2)$q'(t)$は定数関数であることを示せ。
(3)$\displaystyle\lim_{t \to \infty}g(t)$を求めよ。
(4)$f(T)$=$g(T)$となる正の実数$T$に対して、媒介変数表示された平面曲線($x$,$y$)=($f(t)$,$g(t)$) (0≦$t$≦$T$)の長さを求めよ。
$\Large\boxed{2}$ 実数全体を定義域にもつ微分可能な関数$f(t)$, $g(t)$が次の6つの条件を満たしているとする。
$f'(t)$=$-f(t)g(t)$, $g'(t)$=$\left\{f(t)\right\}^2$,
$f(t)$>0, $|g(t)|$<1, $f(0)$=1, $g(0)$=0
このとき $p(t)$=$\left\{f(t)\right\}^2$+$\left\{g(t)\right\}^2$, $q(t)$=$\log\frac{1+g(t)}{1-g(t)}$ とおく。
(1)$p'(t)$を求めよ。
(2)$q'(t)$は定数関数であることを示せ。
(3)$\displaystyle\lim_{t \to \infty}g(t)$を求めよ。
(4)$f(T)$=$g(T)$となる正の実数$T$に対して、媒介変数表示された平面曲線($x$,$y$)=($f(t)$,$g(t)$) (0≦$t$≦$T$)の長さを求めよ。
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 実数全体を定義域にもつ微分可能な関数$f(t)$, $g(t)$が次の6つの条件を満たしているとする。
$f'(t)$=$-f(t)g(t)$, $g'(t)$=$\left\{f(t)\right\}^2$,
$f(t)$>0, $|g(t)|$<1, $f(0)$=1, $g(0)$=0
このとき $p(t)$=$\left\{f(t)\right\}^2$+$\left\{g(t)\right\}^2$, $q(t)$=$\log\frac{1+g(t)}{1-g(t)}$ とおく。
(1)$p'(t)$を求めよ。
(2)$q'(t)$は定数関数であることを示せ。
(3)$\displaystyle\lim_{t \to \infty}g(t)$を求めよ。
(4)$f(T)$=$g(T)$となる正の実数$T$に対して、媒介変数表示された平面曲線($x$,$y$)=($f(t)$,$g(t)$) (0≦$t$≦$T$)の長さを求めよ。
$\Large\boxed{2}$ 実数全体を定義域にもつ微分可能な関数$f(t)$, $g(t)$が次の6つの条件を満たしているとする。
$f'(t)$=$-f(t)g(t)$, $g'(t)$=$\left\{f(t)\right\}^2$,
$f(t)$>0, $|g(t)|$<1, $f(0)$=1, $g(0)$=0
このとき $p(t)$=$\left\{f(t)\right\}^2$+$\left\{g(t)\right\}^2$, $q(t)$=$\log\frac{1+g(t)}{1-g(t)}$ とおく。
(1)$p'(t)$を求めよ。
(2)$q'(t)$は定数関数であることを示せ。
(3)$\displaystyle\lim_{t \to \infty}g(t)$を求めよ。
(4)$f(T)$=$g(T)$となる正の実数$T$に対して、媒介変数表示された平面曲線($x$,$y$)=($f(t)$,$g(t)$) (0≦$t$≦$T$)の長さを求めよ。
投稿日:2024.03.17