【数学模試解説】2022年度 第4回 河合塾高2K塾記述模試 全問解説 - 質問解決D.B.(データベース)

【数学模試解説】2022年度 第4回 河合塾高2K塾記述模試 全問解説

問題文全文(内容文):
大問1:小問集合
(1)$AB=5$,$BC=7$,$CA=6$の三角形ABCがある。$cos∠BAC$の値と三角形ABCの外接円の半径を求めよ。

(2)aは実数の定数とする。xの2次方程式$x^2-2ax+5a-6=0$が異なる2つの正の解をもつようなaの値の範囲を求めよ。

(3)方程式$x^3-4x²+8=0$を解け。

(4)mは実数の定数とする。座標平面における原点Oと直線$y=mx+m+2$の距離が2より大きくなるようなmの値の範囲を求めよ。

(5)実数xが、$2^x+2^{-x}=3$を満たしている。$4^x+4^{-x}$の値を求めよ。

(6)方程式$log_{ 4 } {(5x-1)}=log_{2}{(2x-1)}$を解け。

大問2:三角関数
(1)$sin{\frac{π}{12}}$,$cos{\frac{π}{12}}$の値を求めよ。

(2)Oを原点とするxy平面上にOを中心とする半径1の円Eがあり、E上に3点$A(0,-1)$,$B(\frac{-\sqrt{3}}{2},\frac{1}{2})$, $C(\frac{1}{2},\frac{-\sqrt{3}}{2})$がある。また、Eの上に点Pをとり、$P(cosθ,sinθ)$$(0≦θ≦\frac{π}{2})$とするとき、Lを$L=AP²+BP²+CP²$と定める。
(i)Lをθで表せ。
(ii)θが$0≦θ≦\frac{π}{2}$を変化するとき、Lの最大値、最小値とそれを与えるθの値を求めよ。

大問3:場合の数
1,2,3,4,5,6,7,8,9の9枚のカードをA,B,Cの3人に3枚ずつ配る。
(1)カードの配り方は全部で何通りあるか。
(2)Aのカードの番号がいずれも2の倍数であるような3人への配り方は何通りあるか。
(3)Aのカードの番号の積が3の倍数となるような3人への配り方は何通りあるか。
(4)A,B,Cのカードの番号の積がそれぞれ6の倍数となるような3人への配り方は何通りあるか。

大問4:微分法
aを正の定数とし、関数f(x)を$f(x)=x^3-ax^2+4a-8$とする。
連立不等式$y≧f(x),y≦f(0),x≧0$を満たす整数の組$(x,y)$の個数を$N(a)$とする。
(1)$a=2$のとき、f(x)の増減、極値を調べ、$y=f(x)$のグラフの概形をかけ。
(2)$N(2)$を求めよ。
(3)$f(x)$の極大値をMとする。曲線$y=f(x)$と直線$y=M$の共有点のx座標のうち、正であるものを求めよ。
(4)aを$\frac{9}{4}<a<\frac{5}{2}$を満たす定数とするとき、$N(a)=N(2)$となるようなaの値の範囲を求めよ。


大問5:数列
rは0以外の実数とする。数列$a_n$は、$a_1=1$,$a_{n+1}=ra_n$ $(n=1,2,3,…)$を満たしている。また、この数列$a_n$に対して、数列$b_n$を、$b_1=-1$,$b_{n+1}=2b_n+a_n $ $(n=1,2,3,…)$によって定める。
(1)数列$a_n$の一般項を求めよ。
(2)数列$c_n$を $c_n=\frac{b_n}{r^n}$ によって定める。
(i)$c_{n+1}$を$r$と$c_n$を用いて表せ。
(ii)数列$c_n$の一般項を求めよ。
(3)$S_n=\displaystyle \sum_{k=1}^n b_k$とする。$r=2$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。また、$r=4$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。
チャプター:

0:00 オープニング
0:05 大問1の問題文
0:10 (1)解説:cos、面積
4:41 (2)解説:解の配置
6:57 (3)解説:高次方程式
9:29 (4)解説:点と直線の距離
11:35 (5)解説:指数の対称式
13:02 (6)解説:対数方程式
15:47 大問2の問題文
15:52 (1)の解説:sinπ/12、cosπ/12の値
17:15 (2-i)の解説:Lをθで表せ
20:21 (2-ii)の解説:Lの最大最小
23:47 大問3の問題文
23:52 (1)の解説:カードの分け方
25:12 (2)の解説:いずれも2の倍数
25:59 (3)の解説:積が3の倍数
27:07 (4)の解説:積が6の倍数
30:00 大問4の問題文
30:05 (1)の解説:グラフの概形
32:31 (2)の解説:格子点の個数
33:25 (3)の解説:f(x)と極大値の交点
35:06 (4)の解説:格子点が4個になるとき
38:22 大問5の問題文
38:27 (1)の解説:等比数列の一般項
39:12 (2-i)の解説:指数型の式変形
40:39 (2-ii)の解説:等差型と特性方程式型
44:12 (3)の解説:和が最小になるとき
48:23 エンディング

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)$AB=5$,$BC=7$,$CA=6$の三角形ABCがある。$cos∠BAC$の値と三角形ABCの外接円の半径を求めよ。

(2)aは実数の定数とする。xの2次方程式$x^2-2ax+5a-6=0$が異なる2つの正の解をもつようなaの値の範囲を求めよ。

(3)方程式$x^3-4x²+8=0$を解け。

(4)mは実数の定数とする。座標平面における原点Oと直線$y=mx+m+2$の距離が2より大きくなるようなmの値の範囲を求めよ。

(5)実数xが、$2^x+2^{-x}=3$を満たしている。$4^x+4^{-x}$の値を求めよ。

(6)方程式$log_{ 4 } {(5x-1)}=log_{2}{(2x-1)}$を解け。

大問2:三角関数
(1)$sin{\frac{π}{12}}$,$cos{\frac{π}{12}}$の値を求めよ。

(2)Oを原点とするxy平面上にOを中心とする半径1の円Eがあり、E上に3点$A(0,-1)$,$B(\frac{-\sqrt{3}}{2},\frac{1}{2})$, $C(\frac{1}{2},\frac{-\sqrt{3}}{2})$がある。また、Eの上に点Pをとり、$P(cosθ,sinθ)$$(0≦θ≦\frac{π}{2})$とするとき、Lを$L=AP²+BP²+CP²$と定める。
(i)Lをθで表せ。
(ii)θが$0≦θ≦\frac{π}{2}$を変化するとき、Lの最大値、最小値とそれを与えるθの値を求めよ。

大問3:場合の数
1,2,3,4,5,6,7,8,9の9枚のカードをA,B,Cの3人に3枚ずつ配る。
(1)カードの配り方は全部で何通りあるか。
(2)Aのカードの番号がいずれも2の倍数であるような3人への配り方は何通りあるか。
(3)Aのカードの番号の積が3の倍数となるような3人への配り方は何通りあるか。
(4)A,B,Cのカードの番号の積がそれぞれ6の倍数となるような3人への配り方は何通りあるか。

大問4:微分法
aを正の定数とし、関数f(x)を$f(x)=x^3-ax^2+4a-8$とする。
連立不等式$y≧f(x),y≦f(0),x≧0$を満たす整数の組$(x,y)$の個数を$N(a)$とする。
(1)$a=2$のとき、f(x)の増減、極値を調べ、$y=f(x)$のグラフの概形をかけ。
(2)$N(2)$を求めよ。
(3)$f(x)$の極大値をMとする。曲線$y=f(x)$と直線$y=M$の共有点のx座標のうち、正であるものを求めよ。
(4)aを$\frac{9}{4}<a<\frac{5}{2}$を満たす定数とするとき、$N(a)=N(2)$となるようなaの値の範囲を求めよ。


大問5:数列
rは0以外の実数とする。数列$a_n$は、$a_1=1$,$a_{n+1}=ra_n$ $(n=1,2,3,…)$を満たしている。また、この数列$a_n$に対して、数列$b_n$を、$b_1=-1$,$b_{n+1}=2b_n+a_n $ $(n=1,2,3,…)$によって定める。
(1)数列$a_n$の一般項を求めよ。
(2)数列$c_n$を $c_n=\frac{b_n}{r^n}$ によって定める。
(i)$c_{n+1}$を$r$と$c_n$を用いて表せ。
(ii)数列$c_n$の一般項を求めよ。
(3)$S_n=\displaystyle \sum_{k=1}^n b_k$とする。$r=2$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。また、$r=4$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。
投稿日:2024.01.08

<関連動画>

【数学】(一気見用)高2生必見!! 2019年度8月 第2回 K塾高2模試(※大問1(3)、大問5(*)式に訂正あり)

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2019年度8月 第2回 K塾高2模試 総集編
この動画を見る 

【数学】2019年度10月第3回K塾記述模試 Ⅱ型(全問解説 )

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)mを実数の定数とする。xの2次方程式 $x^2-mx+2=0$ …(*)がある。
(i)(*)が異なる2つの実数解をもつようなmの値の範囲を求めよ。
(ii)(*)が0より大きく3より小さい異なる2つの解をもつようなmの値の範囲を求 めよ。
(2)円に内接する四角形ABCDがあり、$AB=1,BC=3,CD=DA,\cos\angle ABC=-\dfrac{1}{3}$ である。
(i)線分ACの長さを求めよ。
(ii)辺CDの長さを求めよ。
(iii)四角形ABCDの面積を求めよ。
(3)$(2x-y)^7$の展開式における$x^2y^5$の係数を求めよ。
(4)不等式$\log_3(3-2x)+\log_{\rac{1}{3}(x+1)\leqq 1$を解け。
(5)等式$f(x)=x^2+\diplaystyle \int_{0\to 1}xf(t)dt$ を満たす関数f(x)を求めよ。

大問2:微積分
aを$0<a<1$を満たす実数とし、xy平面上に 直線$l:y=-x+2a$, 放物線$C:y=x^2-2ax$ がある。
(1)lとCの交点の座標をすべて求めよ。
(2)lのy≧0の部分とCで囲まれる図形の面積をS₁、lとy≦0の部分とC、および直線 x=2で囲まれる図形の面積をS₂とする。
(i)S₁をaを用いて表せ。
(ii)aが$0<a<1$の範囲を動くとき、$S_1+S_2$を最小にするaの値を求めよ。

大問3:確率
赤、白、青のカードがそれぞれ1枚ずつ箱の中に入っている。この箱の中から無 作為に1枚のカードを取り出し、カードの色を紙に記録し、取り出したカードを 箱の中に戻す。これを1回の操作とし、この操作を繰り返す。ただし、同じ色が2 回連続して紙に記録されたときは、それまでの操作によって紙に記録されたもの をすべて消し、次の操作から再び記録し直すこととする。赤、白、青の3色すべ てが紙に記録されたら操作を終了する。また、終了するまでの操作回数をXとする。
例えば、取り出したカードの色が順に赤、白、赤、白、青のとき、最終的に紙に は【赤、白、赤、白、青】と色が記録され、X=5である。 取り出したカードが順に青、赤、赤、赤、白、青のとき、最終的に紙には【赤、 白、青】と色が記録され、X=6である。
(1)X=3,X=4となる確率をそれぞれ求めよ。
(2)X=5となる確率を求めよ。
(3)X=7となる確率を求めよ。

大問4:整数の性質
整数x,yの方程式 $7x-3y=1$ …(*)がある。
(1)(*)の解の組(x,y)を1組求めよ。
(2)(*)の解の組(x,y)をすべて求めよ。
(3)(*)の解の組(x,y)のうち、xyが10の倍数、かつ$1\leqq x\leqq 2020$を満たすものは何組 あるか。

大問5:図形と方程式
xy平面上に 円$Ca:x^2+y^2-4ax-2(a+3)y+5a^2+6a+4=0$がある。ただし、aは実数とする。
(1)Caの中心の座標と半径を求めよ。
(2)aがすべての字数値をとって変化するとき、Caの中心の軌跡を求めよ。
(3)aがa≧1の範囲を動くときのCaの通過する領域をDとし、定点(s,0)とD上の点 (x,y)の距離をLとする。点(x,y)がD上を動くとき、Lの最小値をsを用いて表せ。

大問6:ベクトル
Oを原点とするxyz空間に、2点A(2,0,0)、B(-1,1,1)と 球面$S:x^2+y^2+z^2-2x-4y-8z+11=0$ があり、Sの中心をCとする。
(1)Cの座標を求めよ。また、Sの半径を求めよ。
(2)s,tを実数とし、$OH=sOA+tOB$とおく。CHが平面OABと垂直になるようなs,tの値 を求めよ。 (3)S上に点Pをとり、四面体OABPを作る。PがS上を動くとき、四面体OABPの体積 の最大値を求めよ。また、そのときのPの座標を求めよ。
この動画を見る 

【数学】2023年度 第2回 K塾高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1問:小問集合
(1)$(3x-1)(9x^2+3x+1)$を展開せよ。
(2)$\displaystyle \frac{x-1}{1+\frac{1}{x+2}}$を簡単にせよ。
(3)2次関数$y=2x^2-x+1$の最小値を求めよ。
(4)iを虚数単位とする。$\displaystyle \frac{(2+i)^2}{i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=4,BC=\sqrt{7},CA=\sqrt{3}$である△ABCにおいて、cos∠BACの値と△ABCの面積を求めよ。
(6)a,a,b,b,c,cの6文字を1列に並べるとき、並べ方は全部で何通りか。このうち、a,aが隣り合わないような並べ方は何通りか。

第2問-i:2次不等式
aは正の定数とする。実数xについての2つの不等式 $ax^2+(2a-5)x-2a+1<0$・・・①、$│2x-3│≦3$・・・②がある。
(1)a=2のとき、①を解け。
(2)②を解け。
(3)②を満たすすべての実数xに対して、①が成り立つようなaの値の範囲を求めよ。

第2問-ii:図形と方程式
xy平面上に、2つの円$C₁:x^2+y^2-10x-a^2-4a+21=0、C2:x^2+y^2=5$がある。また、C₂上の点P(2,1)におけるC₂の 接線を$l$とする。ただし、aはa>-2を満たす定数とする。
(1)a=1のとき、C₁の中心の座標と半径を求めよ。
(2)$l$の方程式を求めよ。
(3)C₁と$l$が接するようなaの値を求めよ。また、このとき のC1と$l$の接点をQとするとき、線分PQの長さを求めよ。

第3問:複素数と方程式
a,bを実数の定数とする。xの3次式$ f(x)=x^3+(a+3)x^2+(3a+b)x+3b$ と、3次方程式 $f(x)=0$・・・(*)がある。
(1)f(-3)を求めよ。
(2)a=-1かつb=1のとき、(*)を解け。
(3)(*)が異なる2つの虚数解をもつためのa,bの条件を求めよ。
(4)a,bが(3)で求めた条件を満たすとし、(*)の異なる2つの虚数解をα,βとする。このとき、$α^2,β^2$がともに(*)の解となるようなa,bの値の組(a,b)をすべて求めよ。

第4問:確率
5枚のカード1,1,2,2,3が入った袋が1つあり、次の操作(I)を考える。
操作(I): 袋から2枚のカードを同時に取り出し、取り出した2枚のカードに書かれた数の和をXとし、取り出した2枚のカードを袋に戻す。
(1)操作(I)を1回行う。
(i)X=2となる確率を求めよ。
(ii)X=4となる確率を求めよ。
さらに、1枚の硬貨を用意し、操作(I)で定まるXの値に対して、次の操作(II)を考える。
操作(II):1枚の硬貨を投げ、表が出たらY=X+1とし、裏が出たらY=Xとする。
操作(I), (II)を(I), (II)の順に1回ずつ行うことを操作Tとする。
(2)操作Tを1回行う。
(i)Y=4となる確率を求めよ。
(ii)Yの期待値を求めよ。
(3)操作Tを3回繰り返すとき、3回のYの値の合計が15になる確率を求めよ。

第5問:三角関数
aを実数の定数とする。θの方程式$cos2θ+2(5a-1)sinθ-12a^2+6a-1=0$・・・(*)がある
(1)cos2θをsinθを用いて表せ。
(2)a=0とする。0≦θ<2πにおいて、(*)を解け。
(3)0≦θ<2πにおいて、(*)が異なる4個の解をもつとする。
(i)aのとり得る値の範囲を求めよ。
(ii)0≦θ<2πにおける(*)の4個の解を、小さい順にθ₁,θ₂,θ₃,θ₄とする。(θ₂-θ₁)+(θ₄-θ₃)=πとなるようなaの値を求めよ。

第6問:数列
nは自然数。等差数列{a_n}があり、a₁+a₂=8,a₄+a₅=20である。また、公比が実数である等比数列{b_n}があり、
b₁+b₂=4, b₄+b₅=108である。
(1)数列{a_n}の一般項を求めよ。また、数列{a_n}の初項から第n項までの和S_nを求めよ。
(2)数列{b_n}の一般項を求めよ。
(3)数列{c_n}は、左から順に次のような項が並べられた数列である。 b₁がa₁個、b₂がa₂個、b₃がa₃個、...、b_nがa_n個、... すなわち、{c}: b₁,...,b₁, b₂,...,b₂, b₃,..,b₃,...,b_n,...,b_n,...
(i)C₂₀₂₃の値を求めよ。ただし、結果は2¹⁰⁰のように指数表示のままでよい。
(ii)$\displaystyle \sum_{k=1}^{2023}c_k$の値を求めよ。ただし、結果は$2^{100}$のように指数表示のままでよい。
この動画を見る 

【数B】数列:2019年第2回高2K塾記述模試の第6問を解いてみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{${a_n}$}$(n=1,2,3,...)$は初項-8、公差4の等差数列であり、数列{$b_n$}$(n=1,2,3,...)$は初項から第n項までの和がS[n]=3^n/2(n=1,2,3,...)で与えられる数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの和を求めよ。
(2)$\displaystyle \sum_{k=1}^{n}(a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。
(4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_kb_k \vert$を求めよ。
この動画を見る 

【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問6_数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$a_n$}($n=1,2,3,...$)は初項-8、公差4の等差数列であり、数列{$b_n$} ($n=1,2,3,...$)は初項から第n項までの和が$S_n\dfrac{3^n}{2}(n=1,2,3,...)$で与えられ る数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの 和を求めよ。 (2)$\displaystyle \sum_{k=1}^n (a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。 (4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_k b_k \vert$を求めよ。
この動画を見る 
PAGE TOP