【数学模試解説】2022年度 第4回 河合塾高2全統記述模試 全問解説 - 質問解決D.B.(データベース)

【数学模試解説】2022年度 第4回 河合塾高2全統記述模試 全問解説

問題文全文(内容文):
大問1:小問集合
(1)$AB=5$,$BC=7$,$CA=6$の三角形ABCがある。$cos∠BAC$の値と三角形ABCの外接円の半径を求めよ。

(2)aは実数の定数とする。xの2次方程式$x^2-2ax+5a-6=0$が異なる2つの正の解をもつようなaの値の範囲を求めよ。

(3)方程式$x^3-4x²+8=0$を解け。

(4)mは実数の定数とする。座標平面における原点Oと直線$y=mx+m+2$の距離が2より大きくなるようなmの値の範囲を求めよ。

(5)実数xが、$2^x+2^{-x}=3$を満たしている。$4^x+4^{-x}$の値を求めよ。

(6)方程式$log_{ 4 } {(5x-1)}=log_{2}{(2x-1)}$を解け。

大問2:三角関数
(1)$sin{\frac{π}{12}}$,$cos{\frac{π}{12}}$の値を求めよ。

(2)Oを原点とするxy平面上にOを中心とする半径1の円Eがあり、E上に3点$A(0,-1)$,$B(\frac{-\sqrt{3}}{2},\frac{1}{2})$, $C(\frac{1}{2},\frac{-\sqrt{3}}{2})$がある。また、Eの上に点Pをとり、$P(cosθ,sinθ)$$(0≦θ≦\frac{π}{2})$とするとき、Lを$L=AP²+BP²+CP²$と定める。
(i)Lをθで表せ。
(ii)θが$0≦θ≦\frac{π}{2}$を変化するとき、Lの最大値、最小値とそれを与えるθの値を求めよ。

大問3:場合の数
1,2,3,4,5,6,7,8,9の9枚のカードをA,B,Cの3人に3枚ずつ配る。
(1)カードの配り方は全部で何通りあるか。
(2)Aのカードの番号がいずれも2の倍数であるような3人への配り方は何通りあるか。
(3)Aのカードの番号の積が3の倍数となるような3人への配り方は何通りあるか。
(4)A,B,Cのカードの番号の積がそれぞれ6の倍数となるような3人への配り方は何通りあるか。

大問4:微分法
aを正の定数とし、関数f(x)を$f(x)=x^3-ax^2+4a-8$とする。
連立不等式$y≧f(x),y≦f(0),x≧0$を満たす整数の組$(x,y)$の個数を$N(a)$とする。
(1)$a=2$のとき、f(x)の増減、極値を調べ、$y=f(x)$のグラフの概形をかけ。
(2)$N(2)$を求めよ。
(3)$f(x)$の極大値をMとする。曲線$y=f(x)$と直線$y=M$の共有点のx座標のうち、正であるものを求めよ。
(4)aを$\frac{9}{4}<a<\frac{5}{2}$を満たす定数とするとき、$N(a)=N(2)$となるようなaの値の範囲を求めよ。


大問5:数列
rは0以外の実数とする。数列$a_n$は、$a_1=1$,$a_{n+1}=ra_n$ $(n=1,2,3,…)$を満たしている。また、この数列$a_n$に対して、数列$b_n$を、$b_1=-1$,$b_{n+1}=2b_n+a_n $ $(n=1,2,3,…)$によって定める。
(1)数列$a_n$の一般項を求めよ。
(2)数列$c_n$を $c_n=\frac{b_n}{r^n}$ によって定める。
(i)$c_{n+1}$を$r$と$c_n$を用いて表せ。
(ii)数列$c_n$の一般項を求めよ。
(3)$S_n=\displaystyle \sum_{k=1}^n b_k$とする。$r=2$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。また、$r=4$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。
チャプター:

0:00 オープニング
0:05 大問1の問題文
0:10 (1)解説:cos、面積
4:41 (2)解説:解の配置
6:57 (3)解説:高次方程式
9:29 (4)解説:点と直線の距離
11:35 (5)解説:指数の対称式
13:02 (6)解説:対数方程式
15:47 大問2の問題文
15:52 (1)の解説:sinπ/12、cosπ/12の値
17:15 (2-i)の解説:Lをθで表せ
20:21 (2-ii)の解説:Lの最大最小
23:47 大問3の問題文
23:52 (1)の解説:カードの分け方
25:12 (2)の解説:いずれも2の倍数
25:59 (3)の解説:積が3の倍数
27:07 (4)の解説:積が6の倍数
30:00 大問4の問題文
30:05 (1)の解説:グラフの概形
32:31 (2)の解説:格子点の個数
33:25 (3)の解説:f(x)と極大値の交点
35:06 (4)の解説:格子点が4個になるとき
38:22 大問5の問題文
38:27 (1)の解説:等比数列の一般項
39:12 (2-i)の解説:指数型の式変形
40:39 (2-ii)の解説:等差型と特性方程式型
44:12 (3)の解説:和が最小になるとき
48:23 エンディング

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)$AB=5$,$BC=7$,$CA=6$の三角形ABCがある。$cos∠BAC$の値と三角形ABCの外接円の半径を求めよ。

(2)aは実数の定数とする。xの2次方程式$x^2-2ax+5a-6=0$が異なる2つの正の解をもつようなaの値の範囲を求めよ。

(3)方程式$x^3-4x²+8=0$を解け。

(4)mは実数の定数とする。座標平面における原点Oと直線$y=mx+m+2$の距離が2より大きくなるようなmの値の範囲を求めよ。

(5)実数xが、$2^x+2^{-x}=3$を満たしている。$4^x+4^{-x}$の値を求めよ。

(6)方程式$log_{ 4 } {(5x-1)}=log_{2}{(2x-1)}$を解け。

大問2:三角関数
(1)$sin{\frac{π}{12}}$,$cos{\frac{π}{12}}$の値を求めよ。

(2)Oを原点とするxy平面上にOを中心とする半径1の円Eがあり、E上に3点$A(0,-1)$,$B(\frac{-\sqrt{3}}{2},\frac{1}{2})$, $C(\frac{1}{2},\frac{-\sqrt{3}}{2})$がある。また、Eの上に点Pをとり、$P(cosθ,sinθ)$$(0≦θ≦\frac{π}{2})$とするとき、Lを$L=AP²+BP²+CP²$と定める。
(i)Lをθで表せ。
(ii)θが$0≦θ≦\frac{π}{2}$を変化するとき、Lの最大値、最小値とそれを与えるθの値を求めよ。

大問3:場合の数
1,2,3,4,5,6,7,8,9の9枚のカードをA,B,Cの3人に3枚ずつ配る。
(1)カードの配り方は全部で何通りあるか。
(2)Aのカードの番号がいずれも2の倍数であるような3人への配り方は何通りあるか。
(3)Aのカードの番号の積が3の倍数となるような3人への配り方は何通りあるか。
(4)A,B,Cのカードの番号の積がそれぞれ6の倍数となるような3人への配り方は何通りあるか。

大問4:微分法
aを正の定数とし、関数f(x)を$f(x)=x^3-ax^2+4a-8$とする。
連立不等式$y≧f(x),y≦f(0),x≧0$を満たす整数の組$(x,y)$の個数を$N(a)$とする。
(1)$a=2$のとき、f(x)の増減、極値を調べ、$y=f(x)$のグラフの概形をかけ。
(2)$N(2)$を求めよ。
(3)$f(x)$の極大値をMとする。曲線$y=f(x)$と直線$y=M$の共有点のx座標のうち、正であるものを求めよ。
(4)aを$\frac{9}{4}<a<\frac{5}{2}$を満たす定数とするとき、$N(a)=N(2)$となるようなaの値の範囲を求めよ。


大問5:数列
rは0以外の実数とする。数列$a_n$は、$a_1=1$,$a_{n+1}=ra_n$ $(n=1,2,3,…)$を満たしている。また、この数列$a_n$に対して、数列$b_n$を、$b_1=-1$,$b_{n+1}=2b_n+a_n $ $(n=1,2,3,…)$によって定める。
(1)数列$a_n$の一般項を求めよ。
(2)数列$c_n$を $c_n=\frac{b_n}{r^n}$ によって定める。
(i)$c_{n+1}$を$r$と$c_n$を用いて表せ。
(ii)数列$c_n$の一般項を求めよ。
(3)$S_n=\displaystyle \sum_{k=1}^n b_k$とする。$r=2$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。また、$r=4$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。
投稿日:2024.01.08

<関連動画>

【数A】確率:2019年第2回高2全統記述模試(河合塾)の第4問を解説!「難しそうだから手を付けませんでした…」と言っていた生徒と状況整理をしながら解いていくと「簡単でしたね!」となりました。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロを1回投げるごとに次の(規則)に従ってPを動かす。
(規則)
・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。
・3の目が出たときはx軸の正の方向に2だけ動かす。
・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。
例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy座標が2である条件付き確率を求めよ。
この動画を見る 

【数B】ベクトル:2021年高3第1回全統記述模試

アイキャッチ画像
単元: #数B#大学入試過去問(数学)#空間ベクトル#空間ベクトル#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
四角形OABCは、OB+3BC=2ABを満たしている。また、辺OAを2:1に内分する点を Dとし、a=OA、c=OCとする。
(1)OBをa,cを用いて表せ。
(2)2直線OB,CDの交点をP とする。OPwpa,cを用いて表せ。また、CP:PDを求めよ。
(3)OA=3、OB=√15,OC=4 とする。(i)内積a・cの値を求めよ。(ii)四角形OABCに、CとDが重なるように折 り目を付け、再び広げて四角形に戻す。折り目の直線lと直線OCの公転をNとする とき、ON:NCを求めよ。また、3直線OB,OC,lで囲まれてできる三角形の面積を求 めよ。
この動画を見る 

【数B】高2生必見!! 2019年度8月 第2回 全統高2模試 大問6_数列

アイキャッチ画像
単元: #数B#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{a[n]}(n=1,2,3,...)は初項-8、公差4の等差数列であり、数列{b[n]} (n=1,2,3,...)は初項から第n項までの和がS[n]=3^n/2(n=1,2,3,...)で与えられ る数列である。
(1)数列{a[n]}の一般項a[n]を求めよ。また、数列{a[n]}の初項から第n項までの 和を求めよ。 (2)∑[k=1→n](a[k])²を求めよ。
(3)数列{b[n]}の一般項b[n]を求めよ。 (4)nを3以上の整数とするとき、∑[k=1→n]|a[k]b[k]|を求めよ。
この動画を見る 

【数Ⅱ】高2生必見!! 2020年度 第2回 全統高2模試 大問5_式と証明・複素数と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数の定数とする。xの3次式 P(x)=x³+3x²+3x+a があり、P(-2)=0を満たす。
(1)aの値を求めよ。
(2)方程式P(x)=0を解け。
(3)方程式P(x)=0の虚数解のうち、虚部が正であるものをα、虚部が負であるもの をβと表す。また、方程式P(x)=0の実数解をγと表す。さらに、A=α+1、B=β+1、 C=γ+1とする。
(i)A²+B²、A³、B³の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。A^n+B^n+C^n=0を満たすnの個数を求めよ。
この動画を見る 

【数B】高2生必見!! 2019年度8月 第2回 全統高2模試 大問7_ベクトル

アイキャッチ画像
単元: #数B#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)GF=tAB(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)AB=√3,AB・AC=-1,AC=√7とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)AH=kAB(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る 
PAGE TOP