【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル - 質問解決D.B.(データベース)

【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル

問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)$GF=tAB$(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)$AB=\sqrt3,AB・AC=-1,AC=\sqrt7$とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)$AH=kAB$(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:20 問題解説(1):内分点はクロス、重心は3つの平均
1:51 問題解説(2-i):始点をそろえる 2:44 問題解説(2-ii):2通りで表して係数比較 4:36 問題解説(3-i):垂直⇔内積=0
6:23 問題解説(3-ii):台形の面積
10:08 名言
10:16 エンディング

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)$GF=tAB$(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)$AB=\sqrt3,AB・AC=-1,AC=\sqrt7$とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)$AH=kAB$(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
投稿日:2021.08.19

<関連動画>

【数学】2024年度第1回高2記述模試全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1) $(x+2)(2x^2-4x+1)$を展開せよ。
(2) $a^2+3ab-6b-4$を因数分解せよ。
(3) $\dfrac{1}{\sqrt5+1} + \dfrac{1}{\sqrt5+3}$ を計算せよ。
(4) $90^\circ \leqq \theta \leqq 180^\circ$において、$\sin\theta=\dfrac14$のとき、$\cos\theta$の値を求めよ。
(5) 不等式 $\dfrac{x+2}{4} \geqq \dfrac{3x-5}2$を解け。
(6) 次のデータがある。 $2,3,4,4,5,6,7,9$
このデータの中央値と第3四分位数を求めよ。
(7) 円と2本の直線が図のように交わっているとき、$x$の値を求めよ。

大問2-1:図形と計量
三角形$\rm ABC$があり、$\rm AB=1, BC=\sqrt7, \cos\angle ABC=\dfrac{5}{2\sqrt7}$ である。
(1) 辺$\rm CA$の長さを求めよ。
(2) $\cos\angle \rm BAC$の値を求めよ。また、三角形$\rm ABC$の面積を求めよ。
(3) $\rm \angle BAC$を5等分する4本の直線が辺$\rm BC$と交わる4個の点のうち、頂点$\rm B$に最も近い点を$\rm D$とする。線分$\rm AD$の長さを求めよ

大問2-2:場合の数
$\rm A,A,B,C,D,E$の6個の文字を横1列に並べる。
(1) 並べ方は全部で何通りあるか。
(2) $\rm A$が左端にないような並べ方は何通りあるか。
(3) $\rm A$が左端になく、かつEが右端にないような並べ方は何通りあるか。

大問3:2次関数
$a, k$を実数とする。2つの関数
$f(x)=x^2+(2-2a)x-6a+3$
$g(x)=2x^2-2ax-\dfrac{a^2}{2}+2a+k$
に対して、$f(x)$の最小値を$M$, $g(x)$の最小値を$m$とする。
(1) $a=0$のときの$M$の値を求めよ。
(2) $m$を$a, k$を用いて表せ。
(3) $M$と$m$の小さくない方を$a$の関数とみなし、$h(a)$とする。すなわち、
$M\geqq m$のとき、$h(a)=M$
$M\leqq m$のとき、$h(a)=m$
(i) $k=-1$のとき, $h(a)=-\dfrac14$となるような$a$の値を求めよ。
(ii) $h(a)$が次の(条件)を満たすような$a$のとり得る値の範囲を求めよ。
(条件) 異なる3個以上の$a$の値に対して $h(a)$ が同じ値をとることがある。


大問4:複素数と方程式
$x$の2次方程式 $x^2-x+2=0$ がある。
(1) (*)を解け。
(2) 3次式 $x^3+2x^2+7$ を2次式 $x^2-x+2$ で割ったときの商と余りを求めよ。
(3) (*)の2つの解を$\alpha ,\beta$とする。
(i) $(\alpha+1)(\beta+1)$ の値と $\alpha^3+\beta^3$ の値を求めよ。
(ii) $a, b$を実数の定数とする、$x$の2次方程式 $x^2+ax+b=0$ の2つの解が
$(\alpha+1)^3(\beta+1)^3$ となるような$a,b$の値の組 $(a, b)$を求めよ。
(4) $p$を(*)の解とし、
$A=(p^3+2p-2+7)^6+9(p^3+2p^2+7)^3+81$ とする、$A$の値を求めよ。

大問5:確率
4個のサイコロ$A,B,C,D$がある。
(1) $A,B$の2個のサイコロを1回振り、出た目をそれぞれ$a,b$とするとき, $ab=30$となる確率を求めよ。
(2) $A,B,C$の3個のサイコロを1回振り、出た目をそれぞれ$a,b,c$とする。
(i) $abc=30$となる確率と,$abc=180$となる確率をそれぞれ求めよ。
(ii) $abc$が30の倍数となる確率を求めよ。
(3) $A,B,C,D$の4個のサイコロを1回振り、出た目をそれぞれ$a,b,c,d$とする。
(i) $a,b,c,d$の中に、5と6がともに含まれる確率を求めよ。
(ii) $abcd$が30の倍数となる確率を求めよ。
この動画を見る 

【数A】確率:2019年第2回高2K塾記述模試の第4問を解説!「難しそうだから手を付けませんでした...」と言っていた生徒と状況整理をしながら解いていくと「簡単でしたね!」となりました。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロを1回投げるごとに次の(規則)に従ってPを動かす。
(規則)
・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。
・3の目が出たときはx軸の正の方向に2だけ動かす。
・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。
例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy座標が2である条件付き確率を求めよ。
この動画を見る 

【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問5_三角関数 (※(*)式に訂正あり)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の整数とする。$\theta$の方程式$ \sin(a\theta)+\sqrt3\cos(a\theta)=1$ ・・・(*) がある。
(1)$\sin(\theta+\dfrac{\pi}{3}$)を$\sin\theta, \cos\theta$の式で表せ。
(2)$a=1$のとき、(*)を$0\leqq\theta\lt 2\pi$において表せ。
(3)(*)の$\theta\geqq 0$を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。$0\leqq\lt 2\pi$において、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
この動画を見る 

【数学】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問1_小問集合 (※(3)問題文に訂正あり)

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)$(x+y+2)^2$を展開せよ。
(2)$\dfrac{x^2-2x}{x^2+4x+3}\times\dfrac{2x+2}{x-2}$を計算せよ。
(3)2次関数$y=2x^2-8x+9 (0\leqq x\leqq 1)$における最小値を求めよ。
(4)iを虚数単位とする。$\dfrac{2+i}{1-3i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=3, BC=4\sqrt2, CA=5$である三角形ABCにおいて、$\cos\angle ABC$を求めよ。また、三 角形ABCの面積を求めよ。
(6)男子6人、女子4人の合計10人から3人を選ぶとき、選び方は全部で何通りか。 また、そのうち、女子が少なくとも1人含まれるような選び方は何通りか。
この動画を見る 

【数学】2024年度第2回高2記述模試全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1) x⁴-5x²+4を因数分解せよ。
(2) 多項式P(x)をx-2で割ると、商がx²+2x+4で、余りが3となるとき、P(x)を求めよ。
(3) kを実数の定数とする。2次関数 y=x²+4x+k の最小値が3であるとき、 kの値を求めよ。
(4) iを虚数単位とする。 i³(2+i) を a+bi (a, bは実数)の形で表せ。
(5) AB=5、BC=6、0°<∠ABC<90°,面積が6√6である三角形ABCにおいて、sin∠ABCの値とCAの長さを求めよ。
(6) 7個の数字1,2,3,4,5,6,7から、異なる3個を選び、それらを並べて3桁の整数を作る。このとき、3桁の整数は全部で何個あるか、また、3桁の偶数は何個あるか。

大問2-1:2次不等式
実数xについての2つの不等式
3x²-11x+6≤0...①
│x-a│<1...②
がある。ただし、aは実数の定数とする。
(1) ①を解け、
(2) a=2のとき、②を解け、
(3) ①かつ②を満たす整数xが、ちょうど2個存在するようなの値の範囲を求めよ。

大問2-2:図形と方程式
xy平面上に、
円C:x²+y²-4x-2y+3=0
直線l:x-2y+a=0
があり、Cの中心をA、半径をrとする。ただし、aは正の定数とする。
(1) Aの座標との値を求めよ。
(2) Cとしが異なる2点で交わるようなの値の範囲を求めよ。
(3) (2)のとき、Cとの異なる2つの交点をP, Qとする、が(2)で求めた範囲を動くとき、三角形APQの面積が最大となるようなaの値を求めよ。

大問3:高次方程式
xの3次式
f(x)=x³-(k+2)x²+(k²+2k-2)x-k³+2k
と、xの3次方程式
f(x)=0...(*)
がある。ただし、kは正の定数とする。
(1) f(k)を求めよ。
(2) k=1のとき、(*)を解け。
(3) (*)が異なる3つの実数解をもつようなんの値の範囲を求めよ。また、そのとき、(*)を解け。
(4) 実数xに対して、x以下の最大の整数を[x]と表す。例えば、[3.5]=3、[2]=2である、(3)のとき、次の条件(#)が成り立つようなkの値の範囲を求めよ。
条件(#): (*)の異なる2解α、βで[α]=[β]を満たすものが存在する。

大問4:確率
数直線上に点Pがある。最初、Pは原点にあり、1枚のコインを1回投げるごとに、表が出たときはPを正の方向に1だけ動かし、裏が出たときはPを負の方向に1だけ動かす。また、Pを初めて正または負の方向に1だけ動かした後、Pが原点に戻るたびに1点を獲得するものとする。
(1) コインを2回投げたとき、Pが原点にある確率を求めよ。
(2) コインを4回投げたとき、
(i) Pが原点にある確率を求めよ。
(ii) 4回目に初めて1点を獲得する確率を求めよ。
(iii) 獲得する点数の合計の期待値を求めよ。
(3) コインを6回投げたとき、1点も獲得しない確率を求めよ。


大問5:三角関数
kを実数の定数とする。以下のような、θの方程式①との不等式②がある。
tan=k...①
2cosθ+1≧0...②
(1) k=1のとき、0≦θ<2πにおいて、①を解け。
(2) 0≦θ<2πにおいて、②を解け。
(3) 0≦θ<2πにおける①の解は2個ある。その2個の解の和が4π/3となるようなんの値を求めよ。
(4) (2)で求めたθの値の範囲における①の解が、2個あるときを考える。その2個の解をα, β(α<β) とする。
(i) kのとり得る値の範囲を求めよ。
(ii) α+β≧7π/4となるようなkの値の範囲を求めよ。

大問6:数列
等差数列{a_n} (n=1,2,3,...) があり、
a₄=28、a₁₀=76
である。また、数列{b_n} (n=1,2,3,...)があり、その一般項は、
b_n=n²-n+2
である。
(1) 数列{a_n}の一般項a_nを求めよ。また、数列{a_n}の初項から第n項までの和S_nを求めよ。
(2) 数列{b_n}の階差数列を{c_n}(n=1,2,3,...) とするとき、数列{c_n}の一般項c_nを求めよ。
(3) (1), (2) で求めたS_n, c_nに対して、次の連立不等式を満たす整数x、yの組(x,y)の個数をA_n(n=1,2,3,...)とする。
1≦x≦c_n、1≦y≦S_n、x²≦y≦4x²
(i) A₂を求めよ。
(ii) A_nを求めよ。
この動画を見る 
PAGE TOP