【高校数学】共通テスト(プレテスト)大問1の[4]~ちゃっちゃと解説~【数学ⅠA】 - 質問解決D.B.(データベース)

【高校数学】共通テスト(プレテスト)大問1の[4]~ちゃっちゃと解説~【数学ⅠA】

問題文全文(内容文):
共通テスト(プレテスト)【数学ⅠA】解説動画です
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
共通テスト(プレテスト)【数学ⅠA】解説動画です
投稿日:2019.09.23

<関連動画>

福田の数学〜2023年共通テスト速報〜数学IIB第3問確率分布〜正規分布と二項分布

アイキャッチ画像
単元: #大学入試過去問(数学)#確率分布と統計的な推測#確率分布#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数B
指導講師: 福田次郎
問題文全文(内容文):
第3問
以下の問題を解答するにあたっては、必要に応じて43ページの正規分布表を用いてもよい。
(1)ある生産地で生産されるピーマン全体を母集団とし、この母集団におけるピーマン1個の重さ(単位はg)を表す確率変数をXとする。mとσを正の実数とし、Xは正規分布N(m, σ2)に従うとする。
(i)この母集団から1個のピーマンを無作為に抽出したとき、重さがm g以上である確率P(X≧m)は
P(X≧m)=P(Xmσ    )=        
である。
(ii)母集団から無作為に抽出された大きさnの標本X1, X2, ..., Xnの標本平均をX¯とする。X¯の平均(期待値)と標準偏差はそれぞれ
E(X¯)=    , σ(X¯)=    
となる。
n=400, 標本平均が30.0g, 標本の標準偏差が3.6gのとき、mの信頼度90%の信頼区間を次の方針で求めよう。
方針:Zを標準正規分布N(0,1)に従う確率変数として、P(z0Zz0)=0.901 となるz0を正規分布表から求める。このz0を用いるとmの信頼度90.1%の信頼区間が求められるが、これを信頼度90%の信頼区間とみなして考える。
方針において、z0=    .    である。
一般に、標本の大きさnが大きいときには、母標準偏差の代わりに、標本の標準偏差を用いてよいことが知られている。n=400は十分に大きいので、方針に基づくと、mの信頼度90%の信頼区間は    となる。
    ,     の解答群(同じものを繰り返し選んでもよい。)
⓪σ ①σ2 ②σn ③σ2n
④m ⑤2m ⑥m2 ⑦m 
σn ⑨nσ nm ⓑmn
    については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪28.6≦m≦31.4 ①28.7≦m≦31.3 ②28.9≦m≦31.1 
③29.6≦m≦30.4 ④29.7≦m≦30.3 ⑤29.9≦m≦30.1
(2)(1)の確率変数Xにおいて、m=30.0, σ=3.6とした母集団から無作為にピーマンを1個ずつ抽出し、ピーマン2個を1組にしたものを袋に入れていく。このようにしてピーマン2個を1組にしたものを25袋作る。その際、1袋ずつの重さの分数を小さくするために、次のピーマン分類法を考える。
ピーマン分類法:無作為に抽出したいくつかのピーマンについて、重さが30.0g以下のときをSサイズ、30.0gを超えるときはLサイズと分類する。そして、分類されたピーマンからSサイズとLサイズのピーマンを一つずつ選び、ピーマン2個を1組とした袋を作る。
(i)ピーマンを無作為に50個抽出した時、ピーマン分類法で25袋作ることができる確率p0を考えよう。無作為に1個抽出したピーマンがSサイズである確率は        である。ピーマンを無作為に50個抽出したときのSサイズのピーマンの個数を表す確率変数をU0とすると、U0は二項分布B(50,        )に従うので
p0=50C×(        )×(1        )50
となる。
p0を計算すると、p0=0.1122...となることから、ピーマンを無作為に50個抽出したとき、25袋作ることができる確率は0.11程度とわかる。
(ii)ピーマン分類法で25袋作ることができる確率が0.95以上となるようなピーマンの個数を考えよう。
kを自然数とし、ピーマンを無作為に(50+k)個抽出したとき、Sサイズのピーマンの個数を表す確率変数をUkとすると、Ukは二項分布B(50+k,        )に従う。
(50+k)は十分に大きいので、Ukは近似的に正規分布N(    ,    )に従い、Y=Uk        とすると、Yは近似的に標準正規分布N(0,1)に従う。
よって、ピーマン分類法で、25袋作ることができる確率をpkとすると
pk=P(25Uk25+k)=P(    50+kY    50+k)
となる。
    =a, 50+k=βとおく。
pk≧0.95になるようなαβについて、正規分布表からαβ≧1.96を満たせばよいことが分かる。ここでは
αβ≧2 ...①
を満たす自然数kを考えることとする。①の両辺は正であるから、α2≧4β2を満たす最小のkをk0とすると、k0=    であることがわかる。ただし、    の計算においては、51=7.14を用いてもよい。
したがって、少なくとも(50+    )個のピーマンを抽出しておけば、ピーマン分類法で25袋作ることができる確率は0.95以上となる。
        の解答群(同じものを繰り返し選んでもよい。)
⓪k ①2k ②3k ③50+k2
25+k2 ⑤25+k ⑥50+k2 ⑦50+k4

2023共通テスト過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。直線と円の表す領域とが共有点をもつ条件の問題。

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#軌跡と領域#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[1]座標平面上に点A(-8,0)をとる。また、不等式
x2+y24x10y+40
の表す領域をDとする。

(1)領域Dは、中心が点(    ,    )、半径が    の円の
    である。

    の解答群
⓪ 周   ① 内部   ② 外部   
③ 周および内部   ④ 周および外部  

以下、点(    ,    )をQとし、方程式
x2+y24x10y+4=0
の表す図形をCとする。

(2)点Aを通る直線と領域Dが共有点をもつのはどのようなときかを考えよう。
(i)(1)により、直線y=    は点Aを通るCの接線の一つとなること
がわかる。
太郎さんと花子さんは点Aを通るCのもう一つの接線について話している。
点Aを通り、傾きがkの直線をlとする。

太郎:直線lの方程式はy=k(x+8)と表すことができるから、
これを
x2+y24x10y+4=0
に代入することで接線を求められそうだね。
花子:x軸と直線AQのなす角のタンジェントに着目することでも
求められそうだよ。

(ii) 太郎さんの求め方について考えてみよう。
y=k(x+8)x2+y24x10y+4=0に代入すると、
xについての2次方程式
(k2+1)x2+(16k210k4)x+64k280k+4=0
が得られる。この方程式が    ときのkの値が接線の傾きとなる。

    の解答群
⓪重解をもつ
①異なる2つの実数解をもち、1つは0である
②異なる2つの正の実数解をもつ
③正の実数解と負の実数解をもつ
④異なる2つの負の実数解をもつ
⑤異なる2つの虚数解をもつ

(iii)花子さんの求め方について考えてみよう。
x軸と直線AQのなす角をθ(0<θπ2)とすると
tanθ=        
であり、直線y=    と異なる接線の傾きはtan    
と表すことができる。

    の解答群
θ   ①2θ   ②(θ+π2)
(θπ2)   ④(θ+π)   ⑤(θπ)
(2θ+π2)   ⑦(2θπ2)

(iv)点Aを通るCの接線のうち、直線y=    と異なる接線の傾き
k0とする。このとき、(ii)または(iii)の考え方を用いることにより
k0=        
であることがわかる。
直線lと領域Dが共有点をもつようなkの値の範囲は    である。

    の解答群
k>k0 ①kk0
k<k0 ③kk0
0<k<k0 ⑤0kk0

2022共通テスト数学過去問
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題5。平面幾何の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第5問 ABCの重心をGとし、線分AG上で点Aとは異なる位置に点Dをとる。
直線AGと辺BCの交点をEとする。また、直線BC上で辺BC上にはない位置に点Fをとる。
直線DFと辺ABの交点をP、直線DFと辺ACの交点をQとする。
(1)点Dは線分AGの中点であるとする。
このとき、ABCの形状に関係なくADDE=        
である。また、点Fの位置に関係なくBPAP=    ×        ,
CQAQ=    ×        であるので、常にBPAP+CQAQ=    

        の解答群
⓪BC ①BF ②CF ③EF ④FP ⑤FQ ⑥PQ

(2)AB=9, BC=8, AC=6とし、(1)と同様に、点Dは線分AGの中点であるとする。
ここで、4点B,C,Q,Pが同一円周上にあるように点Fをとる。このとき、

AQ=         APであるから
AP=        , AQ=        であり、
CF=        である。

(3)ABCの形状や点Fの位置に関係なく、常にBPAP+CQAQ=10となるのは
ADDG=        のときである。

2022共通テスト数学過去問
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題2[1]。2次方程式、2次関数、必要十分条件の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第2問\ [1] p,qを実数とする。
花子さんと太郎さんは、次の二つの2次方程式について考えている。
x2+px+q=0 
x2+qx+p=0 
①または②を満たす実数xの個数をnとおく。

(1)p=4,q=4のとき、n=である。
また、p=1,q=2のとき、n=である。
(2)p=6のとき、n=3になる場合を考える。

花子:例えば、①と②を共に満たす実数xがあるときはn=3
なりそうだね。
太郎:それをαとしたら、α26α+q=0α2+qα6=0
成り立つよ。
花子:なるほど。それならば、α2を消去すれば、αの値が求められそうだね。
太郎:確かにαの値が求まるけど、実際にn=3となっているか
どうかの確認が必要だね。
花子:これ以外にもn=3となる場合がありそうだね。

n=3となるqの値は
q=, 
である。ただし、<とする。

p=6に固定したまま、qの値だけを変化させる。
y=x26x+q 
y=x2+qx6 

(1)この二つのグラフについて、q=1のときのグラフを点線で、
qの値を1から増加させたときのグラフを実線でそれぞれ表す。
このとき、③のグラフの移動の様子を示すととなり、
④のグラフの移動の様子を示すととなる。

, については、最も適当なものを、次の⓪~⑦
のうちから一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
なお、x軸とy軸は省略しているが、x軸は右方向、
y軸は上方向がそれぞれ正の方向である。
(※選択肢は動画参照)

(4)<q<とする。全体集合Uを実数全体の集合とし、
Uの部分集合A,Bを

A={x | x26x+q<0}
B={x | x2+qx6<0}

とする。Uの部分集合Xに対し、Xの補集合をX¯と表す。このとき、
次のことが成り立つ。

xAは、xBであるための
xBは、xA¯であるための

, の解答群(同じものを繰り返し選んでもよい。)
⓪必要条件であるが、十分条件ではない
①十分条件であるが、必要条件ではない
②必要十分条件である
③必要条件でも十分条件でもない

2022共通テスト数学過去問
この動画を見る 

共通1次試験 整数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
共通一次試験
m,k自然数 求めよ
2+1k+1m+15=803371
この動画を見る 
PAGE TOP preload imagepreload image