問題文全文(内容文):
大問1
今から何千年も前のエジプトの人々が、分数を分母の異なる単位分数の和で表した記録がたくさん発見されています。(単位分数とは$\displaystyle \frac{1}{2}、\frac{1}{3}、\frac{1}{4}…$のように分子が1の分数をいいます。)
$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20} \frac{3}{8}=\frac{1}{3}+\frac{1}{24} \frac{8}{9}=\frac{1}{2}+\frac{1}{3}+\frac{1}{18}$ のようなものです。
このような表し方として、次のような方法が考えられます。たとえば$\displaystyle \frac{4}{5}$について 考えると、$\displaystyle \frac{4}{5}$は$\displaystyle \frac{1}{2}$より大きいのでまず$\displaystyle \frac{1}{2}$をとると、$\displaystyle \frac{4}{5}-\frac{1}{2}=\frac{3}{10}、\frac{3}{10}$から$\displaystyle \frac{1}{3}$はとれないので$\displaystyle \frac{1}{4}$をとると、$\displaystyle \frac{3}{10}-\frac{1}{4}=\frac{1}{20}$、したがって$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}$と
できます。
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{3}{4}$
(2) $\displaystyle \frac{4}{7}$
(3) $\displaystyle \frac{11}{35}$
大問2
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{2}{7}$
(2) $\displaystyle \frac{11}{12}$
(3) $\displaystyle \frac{5}{13}$
大問1
今から何千年も前のエジプトの人々が、分数を分母の異なる単位分数の和で表した記録がたくさん発見されています。(単位分数とは$\displaystyle \frac{1}{2}、\frac{1}{3}、\frac{1}{4}…$のように分子が1の分数をいいます。)
$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20} \frac{3}{8}=\frac{1}{3}+\frac{1}{24} \frac{8}{9}=\frac{1}{2}+\frac{1}{3}+\frac{1}{18}$ のようなものです。
このような表し方として、次のような方法が考えられます。たとえば$\displaystyle \frac{4}{5}$について 考えると、$\displaystyle \frac{4}{5}$は$\displaystyle \frac{1}{2}$より大きいのでまず$\displaystyle \frac{1}{2}$をとると、$\displaystyle \frac{4}{5}-\frac{1}{2}=\frac{3}{10}、\frac{3}{10}$から$\displaystyle \frac{1}{3}$はとれないので$\displaystyle \frac{1}{4}$をとると、$\displaystyle \frac{3}{10}-\frac{1}{4}=\frac{1}{20}$、したがって$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}$と
できます。
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{3}{4}$
(2) $\displaystyle \frac{4}{7}$
(3) $\displaystyle \frac{11}{35}$
大問2
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{2}{7}$
(2) $\displaystyle \frac{11}{12}$
(3) $\displaystyle \frac{5}{13}$
チャプター:
0:00 オープニング
0:10 大問1(1)
2:13 大問1(2)
2:51 大問1(3)
5:24 大問2(1)
6:12 大問2(2)
6:59 大問2(3)
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#数の性質その他
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
受験算数の森
問題文全文(内容文):
大問1
今から何千年も前のエジプトの人々が、分数を分母の異なる単位分数の和で表した記録がたくさん発見されています。(単位分数とは$\displaystyle \frac{1}{2}、\frac{1}{3}、\frac{1}{4}…$のように分子が1の分数をいいます。)
$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20} \frac{3}{8}=\frac{1}{3}+\frac{1}{24} \frac{8}{9}=\frac{1}{2}+\frac{1}{3}+\frac{1}{18}$ のようなものです。
このような表し方として、次のような方法が考えられます。たとえば$\displaystyle \frac{4}{5}$について 考えると、$\displaystyle \frac{4}{5}$は$\displaystyle \frac{1}{2}$より大きいのでまず$\displaystyle \frac{1}{2}$をとると、$\displaystyle \frac{4}{5}-\frac{1}{2}=\frac{3}{10}、\frac{3}{10}$から$\displaystyle \frac{1}{3}$はとれないので$\displaystyle \frac{1}{4}$をとると、$\displaystyle \frac{3}{10}-\frac{1}{4}=\frac{1}{20}$、したがって$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}$と
できます。
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{3}{4}$
(2) $\displaystyle \frac{4}{7}$
(3) $\displaystyle \frac{11}{35}$
大問2
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{2}{7}$
(2) $\displaystyle \frac{11}{12}$
(3) $\displaystyle \frac{5}{13}$
大問1
今から何千年も前のエジプトの人々が、分数を分母の異なる単位分数の和で表した記録がたくさん発見されています。(単位分数とは$\displaystyle \frac{1}{2}、\frac{1}{3}、\frac{1}{4}…$のように分子が1の分数をいいます。)
$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20} \frac{3}{8}=\frac{1}{3}+\frac{1}{24} \frac{8}{9}=\frac{1}{2}+\frac{1}{3}+\frac{1}{18}$ のようなものです。
このような表し方として、次のような方法が考えられます。たとえば$\displaystyle \frac{4}{5}$について 考えると、$\displaystyle \frac{4}{5}$は$\displaystyle \frac{1}{2}$より大きいのでまず$\displaystyle \frac{1}{2}$をとると、$\displaystyle \frac{4}{5}-\frac{1}{2}=\frac{3}{10}、\frac{3}{10}$から$\displaystyle \frac{1}{3}$はとれないので$\displaystyle \frac{1}{4}$をとると、$\displaystyle \frac{3}{10}-\frac{1}{4}=\frac{1}{20}$、したがって$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}$と
できます。
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{3}{4}$
(2) $\displaystyle \frac{4}{7}$
(3) $\displaystyle \frac{11}{35}$
大問2
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{2}{7}$
(2) $\displaystyle \frac{11}{12}$
(3) $\displaystyle \frac{5}{13}$
投稿日:2024.11.07