【共通テスト】数学2B2024年レビュー(総評、傾向解説) - 質問解決D.B.(データベース)

【共通テスト】数学2B2024年レビュー(総評、傾向解説)

問題文全文(内容文):
勉強法
チャプター:

00:00 OP
0:38 大問1
2:58 大問2
4:52 大問4
5:40 大問5

単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
勉強法
投稿日:2024.01.15

<関連動画>

そのまま〇〇するな!   A A

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=-3x^2$でxの変域が$-4 \leqq x \leqq 1$のとき
$▢ \leqq y \leqq ▢$

2021東京都立共通問題
この動画を見る 

【残り9日】共テ数学IAの全大問解説、まとめました【流し見OK】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学IAの全大問解説、まとめ動画です
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第2問〜データの分析

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第2問}$
[1] 花子さんと太郎さんのクラスでは、文化祭でたこ焼き店を出店することになった。
二人は1皿当たりの価格をいくらにするかを検討している。次の表は、過去の文化祭で
のたこ焼き店の売り上げデータから、1皿あたりの価格と売り上げ数の関係を
まとめたものである。

$\begin{array}{|c|c|c|c|}
\hline 1皿あたりの価格(円) & 200 & 250 & 300\\
\hline 売り上げ数(皿) & 200 & 150 & 100\\\hline
\end{array}$

(1)まず、二人は、上の表から、1皿あたりの価格が50円上がると売り上げ数が
50皿減ると考えて、売り上げ数が1皿あたりの価格の1次関数で表される
と仮定した。このとき、1皿あたりの価格を$x$円とおくと、売り上げ数は
$\boxed{\ \ アイウ\ \ }-x$ $\cdots$①

と表される。

(2)次に、二人は、利益の求め方について考えた。
花子:利益は、売り上げ金額から必要な経費を引けば求められるよ。
太郎:売上金額は、1皿あたりの価格と売り上げ数の積で求まるね。
花子:必要な経費は、たこ焼き用器具の賃貸料と材料費の合計だね。
材料費は、売り上げ数と1皿あたりの材料費の積になるね。

二人は、次の三つの条件のもとで、1皿あたりの価格xを用いて
利益を表すことにした。

(条件1) 1皿あたりの価格がx円のときの売り上げ数として①を用いる。
(条件2) 材料は、①により得られる売り上げ数に必要な分量だけ仕入れる。
(条件3) 1皿あたりの材料費は160円である。たこ焼き用器具の賃貸料は
6000円である。材料費とたこ焼き用器具の賃貸料以外の経費はない。

利益は$y$円とおく。$y$を$x$の式で表すと
$y=-x^2+\boxed{\ \ エオカ\ \ }x-\boxed{\ \ キ\ \ }×10000$ $\cdots$②
である。

(3)太郎さんは利益を最大にしたいと考えた。②を用いて考えると、利益
が最大になるのは1個あたりの価格が$\boxed{\ \ クケコ\ \ }$円のときであり、
そのときの利益は$\boxed{\ \ サシスセ\ \ }$円である。

(4)花子さんは、利益を7500円以上となるようにしつつ、できるだけ安い
価格で提供したいと考えた。②を用いて考えると、利益が7500円以上となる
1皿あたりの価格のうち、最も安い価格は$\boxed{\ \ ソタチ\ \ }$円となる。

[2] 総務省が実施している国勢調査では都道府県ごとの総人口が調べられており、
その内訳として日本人人口と外国人人口が公表されている。また、外務省では旅券
(パスポート)を取得した人数を都道府県ごとに公表している。加えて
文部科学省では都道府県ごとの小学校に在籍する児童数を公表している。
そこで、47都道府県の、人口1万人あたりの外国人人口(以下、外国人数)、
人口1万人当たりの小学校児童数(以下、小学生数)、また、日本人1万人あたり
の旅券を取得した人数(以下、旅券取得者数)を、それぞれ計算した。
次の$(\textrm{I}),(\textrm{II}),(\textrm{III})$は図1(動画参照)の散布図に関する記述
である。

$(\textrm{I})$小学生数の四分位範囲は、外国人数の四分位範囲より大きい。
$(\textrm{II})$旅券取得者数の範囲は、外国人数の範囲より大きい。
$(\textrm{III})$旅券取得者数と小学生数の相関係数は、旅券取得者数と外国人数
の相関係数より大きい。

$(\textrm{I}),(\textrm{II}),(\textrm{III})$の正誤の組み合わせとして正しいものは$\boxed{\boxed{\ \ ツ\ \ }}$である。
$(\boxed{\boxed{\ \ ツ\ \ }}$の解答群は動画参照)


(2)一般に、度数分布表
$\begin{array}{|c|c|c|c|c|c|c|c|}\hline
階級値 & x_1 & x_2 & x_3 & x_4 & \cdots & x_k & 計\\\hline
度数 & f_1 & f_2 & f_3 & f_4 & \cdots & f_k & n\\\hline
\end{array}$

が与えられていて、各階級に含まれるデータの値がすべてその階級値に
等しいと仮定すると、平均値$\bar{x}$は
$\bar{x}=\displaystyle \frac{1}{n}(x_1f_1+x_2f_2+x_3f_3+x_4f_4+\cdots+x_kf_k)$

で求めることができる。さらに階級の幅が一定で、その値が$h$のときは
$x_2=x_1+h, x_3=x_1+2h, x_4=x_1+3h, \cdots, x_k=x_1+(k-1)h$
に注意すると
$\bar{x}=\boxed{\boxed{\ \ テ\ \ }}$
と変形できる。

$\boxed{\boxed{\ \ テ\ \ }}$については、最も適当なものを、次の⓪~④のうちから一つ
選べ。
⓪$\displaystyle \frac{x_1}{n}(f_1+f_2+f_3+f_4+\cdots+f_k)$
①$\displaystyle \frac{h}{n}(f_1+2f_2+3f_3+4f_4+\cdots+kf_k)$
②$x_1+\displaystyle \frac{h}{n}(f_2+f_3+f_4+\cdots+f_k)$
③$x_1+\displaystyle \frac{h}{n}(f_2+2f_3+3f_4+\cdots+(k-1)f_k)$
④$\displaystyle \frac{1}{2}(f_1+f_k)x_1-\displaystyle \frac{1}{2}(f_1+kf_k)$

図2は、2008年における47都道府県の旅券取得者数のヒストグラムである。
なお、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を
含まない。

図2(※動画参照)のヒストグラムに関して、各階級に含まれるデータの値が
すべてその階級値に等しいと仮定する。このとき、平均値$\bar{x}$は小数第1位を
四捨五入すると$\boxed{\ \ トナニ\ \ }$である。

(3)一般に、度数分布表
$\begin{array}{|c|c|c|c|c|c|}\hline
階級値 & x_1 & x_2 & \cdots & x_k & 計\\\hline
度数 & f_1 & f_2 & \cdots & f_k & n\\\hline
\end{array}$

が与えられていて、各階級に含まれるデータの値が全てその階級値に
等しいと仮定すると、分散$s^2$は
$s^2=\displaystyle \frac{1}{n}\left\{(x_1-\bar{x})^2f_1+(x_2-\bar{x})^2f_2+\cdots+(x_k-\bar{x})^2f_k\right\}$
で求めることができる。さらにs^2は
$s^2=\displaystyle \frac{1}{n} \left\{(x_1^2f_1+x_2^2f_2+\cdots+x_k^2f_k)-2\bar{x}× \boxed{\boxed{\ \ ヌ\ \ }}+(\bar{x})^2×\boxed{\boxed{\ \ ネ\ \ }}\right\}$

と変形できるので
$s^2=\displaystyle \frac{1}{n}(x_1^2f_1+x_2^2f_2+\cdots+x_k^2f_k)-\boxed{\boxed{\ \ ノ\ \ }}$ $\cdots$①
である。
$\boxed{\boxed{\ \ ヌ\ \ }}~\boxed{\boxed{\ \ ノ\ \ }}$の解答群(同じものを繰り返し選んでもよい)
⓪$n$
①$n^2$
②$\bar{x}$
③$n\bar{x}$
④$2n\bar{x}$
⑤$n^2\bar{x}$
⑥$(\bar{x})^2$
⑦$n(\bar{x})^2$
⑧$2n(\bar{x})^2$
⑨$3n(\bar{x})^2$

図3(※動画参照)は図2を再掲したヒストグラムである。


図3のヒストグラムに関して、各階級に含まれるデータの値が全て
その階級値に等しいと仮定すると、平均値$\bar{x}$は(2)で求めた$\boxed{\ \ トナニ\ \ }$
である。$\boxed{\ \ トナニ\ \ }$の値と式①を用いると、分散$s^2$は$\boxed{\boxed{\ \ ハ\ \ }}$である。

$\boxed{\boxed{\ \ ハ\ \ }}$については、最も近いものを、次の⓪~⑦のうちから一つ選べ。
⓪$3900$ ①$4900$ ②$5900$ ③$6900$
④$7900$ ⑤$8900$ ⑥$9900$ ⑦$10900$

2021共通テスト過去問
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第2問〜微分積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第2問}$
(1)座標平面上で、次の二つの2次関数のグラフについて考える。
$y=3x^2+2x+3$ $\cdots$①
$y=2x^2+2x+3$ $\cdots$②

①、②の2次関数のグラフには次の共通点がある。

共通点
・$y$軸との交点の$y$座標は$\boxed{\ \ ア\ \ }$である。
・$y$軸との交点における接線の方程式は$y=\boxed{\ \ イ\ \ }x+\boxed{\ \ ウ\ \ }$である。

次の⓪~⑤の2次関数のグラフのうち、$y$軸との交点における接線の方程式
が$y=\boxed{\ \ イ\ \ }x+\boxed{\ \ ウ\ \ }$となるものは$\boxed{\boxed{\ \ エ\ \ }}$である。

$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪$y=3x^2-2x-3$
①$y=-3x^2+2x-3$
②$y=2x^2+2x-3$
③$y=2x^2-2x+3$
④$y=-x^2+2x+3$
⑤$y=-x^2-2x+3$

$a,b,c$を$0$でない実数とする。
曲線$y=ax^2+bx+c$上の点$\left(0, \boxed{\ \ オ\ \ }\right)$における接線をlとすると
その方程式は$y=\boxed{\ \ カ\ \ }x+\boxed{\ \ キ\ \ }$である。

接線$l$と$x$軸との交点の$x$座標は$\displaystyle \frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}$である。
$a,b,c$が正の実数であるとき、曲線$y=ax^2+bx+c$と接線lおよび直線
$x=\displaystyle \frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}$で囲まれた図形の面積をSとすると
$S=\displaystyle \frac{ac^{\boxed{サ}}}{\boxed{\ \ シ\ \ }\ b^{\boxed{ス}}}$ $\cdots$③
である。

③において、$a=1$とし、$S$の値が一定となるように正の実数$b,c$の値を
変化させる。このとき、$b$と$c$の関係を表すグラフの概形は$\boxed{\boxed{\ \ セ\ \ }}$る。


$\boxed{\boxed{\ \ セ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
(※選択肢は動画参照)

(2)座標平面上で、次の三つの3次関数のグラフについて考える。
$y=4x^3+2x^2+3x+5$ $\cdots$④
$y=-2x^3+7x^2+3x+5$ $\cdots$⑤
$y=5x^3-x^2+3x+5$ $\cdots$⑥

④、⑤、⑥の3次関数のグラフには次の共通点がある。
共通点
・$y$軸との交点の$y$座標は$\boxed{\ \ ソ\ \ }$である。
・$y$軸との交点における接線の方程式は$y=\boxed{\ \ タ\ \ }\ x+\boxed{\ \ チ\ \ }$である。

$a,b,c,d$を$0$でない実数とする。
曲線$y=ax^3+bx^2+cx+d$上の点$\left(0, \boxed{\ \ ツ\ \ }\right)$における接線の
方程式は$y=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ }$である。

次に、$f(x)=ax^3+bx^2+cx+d,$ $g(x)=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ }$とし、
$f(x)-g(x)$について考える。

$h(x)=f(x)-g(x)$とおく。$a,b,c,d$が正の実数であるとき、$y=h(x)$
のグラフの概形は$\boxed{\boxed{\ \ ナ\ \ }}$である。

$y=f(x)$のグラフと$y=g(x)$のグラフの共有点の$x$座標は$\displaystyle \frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}$
と$\boxed{\ \ ノ\ \ }$である。また、$x$が$\displaystyle \frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}$と$\boxed{\ \ ノ\ \ }$の間を動くとき、
$|f(x)-g(x)|$の値が最大となるのは、$x=\displaystyle \frac{\boxed{\ \ ハヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }}$のときである。

$\boxed{\boxed{\ \ ナ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
(※選択肢は動画参照)

2021共通テスト過去問
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第4問〜数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
初項3、交差$p$の等差数列を$\left\{a_n\right\}$とし、初項3、公比$r$の等比数列を$\left\{b_n\right\}$と
する。ただし、$p \ne 0$かつ$r \ne 0$とする。さらに、これらの数列が次を満たすとする。
$a_nb_{n+1}-2a_{n+1}b_n+3b_{n+1}=0$ $(n=1,2,3,\ldots)\cdots$①

(1)$p$と$r$の値を求めよう。自然数$n$について、$a_n,a_{n+1},b_n$はそれぞれ
$a_n=\boxed{\ \ ア\ \ }+(n-1)p$ $\cdots$②
$a_{n+1}=\boxed{\ \ ア\ \ }+np$ $\cdots$③
$b_n=\boxed{\ \ イ\ \ }r^{n-1}$
と表される。$r \ne 0$により、すべての自然数$n$について、$b_n \ne 0$となる。
$\displaystyle \frac{b_{n+1}}{b_n}=r$であることから、①の両辺を$b_n$で割ることにより
$\boxed{\ \ ウ\ \ }a_{n+1}=r\left(a_n+\boxed{\ \ エ\ \ }\right)$ $\cdots$④
が成り立つことが分かる。④に②と③を代入すると
$\left(r-\boxed{\ \ オ\ \ }\right)pn=r\left(p-\boxed{\ \ カ\ \ }\right)+\boxed{\ \ キ\ \ }$ $\cdots$⑤
となる。⑤が全ての$n$で成り立つことおよび$p \ne 0$により、$r=\boxed{\ \ オ\ \ }$を得る。
さらに、このことから、$p=\boxed{\ \ ク\ \ }$を得る。
以上から、すべての自然数$n$について、$a_n$と$b_n$が正であることもわかる。

(2)$p=\boxed{\ \ ク\ \ },$ $r=\boxed{\ \ オ\ \ }$であるから、$\left\{a_n\right\},$ $\left\{b_n\right\}$の初項から第$n$項
までの和は、それぞれ次の式で与えられる。
$\sum_{k=1}^na_k=\displaystyle \frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}n\left(n+\boxed{\ \ サ\ \ }\right)$
$\sum_{k=1}^nb_k=\boxed{\ \ シ\ \ }\left(\boxed{\ \ オ\ \ }^n-\boxed{\ \ ス\ \ }\right)$

(3)数列$\left\{a_n\right\}$に対して、初項3の数列$\left\{c_n\right\}$が次を満たすとする。
$a_nc_{n+1}-4a_{n+1}c_n+3c_{n+1}=0$ $(n=1,2,3,\ldots)\cdots$⑥
$a_n$が正であることから、⑥を変形して、$c_{n+1}=\displaystyle \frac{\boxed{\ \ セ\ \ }a_{n+1}}{a_n+\boxed{\ \ ソ\ \ }}c_n$を得る。
さらに、$p=\boxed{\ \ ク\ \ }$であることから、数列$\left\{c_n\right\}$は$\boxed{\boxed{\ \ タ\ \ }}$ことがわかる。

$\boxed{\boxed{\ \ タ\ \ }}$の解答群
⓪すべての項が同じ値をとる数列である
①公差が0でない等差数列である
②公比が1より大きい等比数列である
③公比が1より小さい等比数列である
④等差数列でも等比数列でもない

(4)$q,u$は定数で$q \ne 0$とする。数列$\left\{b_n\right\}$に対して、初項3の数列$\left\{d_n\right\}$が
次を満たすとする。
$d_nb_{n+1}-qd_{n+1}b_n+ub_{n+1}=0$ $(n=1,2,3,\ldots)\cdots$⑦
$r=\boxed{\ \ オ\ \ }$であることから、⑦を変形して、$d_{n+1}=\displaystyle \frac{\boxed{\ \ チ\ \ }}{q}(d_n+u)$
を得る。したがって、数列$\left\{d_n\right\}$が、公比が0より大きく1より小さい
等比数列となるための必要十分条件は、$q \gt \boxed{\ \ ツ\ \ }$かつ$u=\boxed{\ \ テ\ \ }$
である。

2021共通テスト過去問
この動画を見る 
PAGE TOP