【共通テスト】数学1A2024年レビュー・総評・傾向まとめ - 質問解決D.B.(データベース)

【共通テスト】数学1A2024年レビュー・総評・傾向まとめ

チャプター:

00:00 OP
0:50 大問1
2:13 大問2
4:12 大問3
5:13 大問4
5:59 大問5

単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
投稿日:2024.01.15

<関連動画>

2023年共通テスト数学1A講評【易化】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
2023年共通テスト数学1Aを講評します。

各問題の解き方や、注意すべき点を確認しましょう。

復習の参考にしましょう!
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第3問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
3
中にくじが入っている箱が複数あり、各箱の外見は同じであるが、当たりくじ
を引く確率は異なっている。くじ引きの結果から、どの箱からくじを引いた可能
性が対価を、条件付き確率を用いて考えよう。

(1)当たりくじを引く確率が12である箱Aと、当たりくじを引く確率が13
である箱Bの二つの箱の場合を考える。

(i)各箱で、くじを1本引いてはもとに戻す試行を3回繰り返したとき
箱Aにおいて、3回中ちょうど1回当たる確率は         
箱Bにおいて、3回中ちょうど1回当たる確率は         
である。

(ii)まず、AとBのどちらか一方の箱をでたらめに選ぶ。次にその選んだ箱
において、くじを1本引いてはもとに戻す試行を3回繰り返したところ、3
回中ちょうど1回当たった。このとき、箱Aが選ばれる事象をA、箱Bが
選ばれる事象をB、3回中ちょうど1回当たる事象をWとすると
P(AW)=12×        , P(BW)=12×        
である。P(W)=P(AW)+P(BW)であるから。3回中ちょうど1
回当たった時、選んだ箱がAである条件付き確率PW(A)        
なる。また、条件付き確率はPW(B)        となる。
(2)(1)のPW(A)PW(B)について、次の事実(*)が成り立つ。

事実(*)
PW(A)PW(B)    は、①の確率と②の確率の    
に等しい。

    の解答群
⓪和 ①2乗の和 ②3乗の和 ③比 ④積

(3)花子さんと太郎さんは事実(*)について話している。
花子:事実(*)はなぜ成り立つのかな?
太郎:PW(A)PW(B)を求めるのに必要なP(AW)P(BW)
の計算で、①,②の確率に同じ数12をかけているからだよ。
花子:なるほどね。外見が同じ三つの箱の場合は、同じ数13をかける
ことになるので、同様のことが成り立ちそうだね。

当たりくじを引く確率が、12である箱A13である箱B14である箱
Cの三つの箱の場合を考える。まず、A,B,Cのうちどれか一つの箱
をでたらめに選ぶ。次にその選んだ箱において、くじを1本引いては
もとに戻す試行を3回繰り返したところ、3回中ちょうど1回当たった。
このとき、選んだ箱がAである条件付き確率は        となる。

(4)花子:どうやら箱が三つの場合でも、条件付き確率の    は各箱で
3回中ちょうど1回当たりくじを引く確率の    になっている
みたいだね。
太郎:そうだね。それを利用すると、条件付き確率の値は計算しなくて
も、その大きさを比較することができるね。

当たりくじを引く確率が、12である箱A13である箱B14である箱
C15である箱Dの四つの箱の場合を考える。まず、A,B,C,Dのうち
どれか一つの箱をでたらめに選ぶ。次にその選んだ箱において、くじを
1本引いてはもとに戻す試行を3回繰り返したところ、3回中ちょうど
1回当たった。このとき、条件付き確率を用いて、どの箱からくじを
引いた可能性が高いかを考える。可能性が高い方から順に並べると
    となる。
    の解答群
A,B,C,D
A,B,D,C
A,C,B,D
A,C,D,B
A,D,B,C
B,A,C,D
B,A,D,C
B,C,A,D
B,C,D,A

2021共通テスト過去問
この動画を見る 

【日本最速解答速報】共通テスト2023数学2B 第2問・第4問【今となっては過去問解説】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テスト2023数学2B 第2問・第4問解説していきます.
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[3]。三角比と図形の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第1問\ [3] 外接円の半径が3であるABCを考える。点Aから直線BCへ引いた垂線と直線BC
との交点をDとする。

(1)AB=5, AC=4とする。このときsinABC=, AD= である。

(2) 2辺AB,ACの長さの間に2AB+AC=14の関係があるとする。
このとき、ABの長さの取り得る値の範囲はABであり、
AD=AB2+ABと表せるので、ADの長さの最大値はである。

2022共通テスト数学過去問
この動画を見る 

2024共通テスト数学 あけましておめでとう

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数lを3進数と4進数で表したら、ともに下ケタが012になった
最小のlを求めよ

2024共通テスト過去問
この動画を見る 
PAGE TOP preload imagepreload image