12和歌山県教員採用試験(数学:1-(5) 相加・相乗平均) - 質問解決D.B.(データベース)

12和歌山県教員採用試験(数学:1-(5) 相加・相乗平均)

問題文全文(内容文):
$\boxed{1}-(5)$
$a\gt 0$とする.
$a^{3x}+a^{-3x}=2$のとき,
$a^x+a^{-x}$の値を求めよ.
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(5)$
$a\gt 0$とする.
$a^{3x}+a^{-3x}=2$のとき,
$a^x+a^{-x}$の値を求めよ.
投稿日:2021.06.22

<関連動画>

練習問題24 兵庫県教採練習問題 14番 面積

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{14}$
$c:y=x\sin x \ (0\leqq x\leqq 2\pi)$
第4象限にある$C$上の点の接線$\ell$は原点を通る.
$c$と$\ell$で囲まれた面積$S$を求めよ.
この動画を見る 

12京都府教員採用試験(数学:1番 解の個数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$a\in IR$とする.
$\log_{2} (x+1)-\log+(2x-a+3)-1=0$が
異なる2つの解をもつ
$a$の値の範囲を求めよ.
この動画を見る 

17大阪府教員採用試験(数学:3番 整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$x,y,z,a \in IR$,$x+y+z=a$
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{a}$をみたすとき,

(1)$x,y,z$のどれか1つは$a$と等しい.
(2)$n$が奇数のとき,$\dfrac{1}{x^n}+\dfrac{1}{y^n}+\dfrac{1}{z^n}=\dfrac{1}{x^n+y^n+z^n}$
この動画を見る 

15京都府教員採用試験(数学:5番 帰納法)

アイキャッチ画像
単元: #数列#数学的帰納法#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$
$4\leqq n:$自然数とする.
$3^{n-2}\gt n^2-3n+4$を示せ.
この動画を見る 

11三重県教員採用試験(数学:1番 整数問題)

アイキャッチ画像
単元: #数A#数Ⅱ#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$p$整数
$x^2-3|x+7p=0$の2つの解$\alpha,\beta$自然数とする。
$\alpha,\beta$が最大となる$p$を求めよ。
この動画を見る 
PAGE TOP