【数学】2023年度 第4回 高2模試 全問解説 - 質問解決D.B.(データベース)

【数学】2023年度 第4回 高2模試 全問解説

問題文全文(内容文):
大問1:小問集合
(1)AB=15, AC=7, ∠BAC=60°の△ABCがある。辺BCの長さと△ABCの内接円の半径を求めよ。
(2)aを実数の定数とする。xの2次方程式x2-ax-a-9=0が-2より小さい解と3より大きい解をもつようなの値の範囲を求めよ。
(3)方程式x3+3x2+2x-6=0を複素数の範囲で解け。
(4)座標平面上の直線y=x上の点で、直線x+2y-4=0までの距離が√5である点の座標をすべて求めよ。
(5)方程式4^(x+1)+7・2^x-2=0を解け。
(6)不等式log₂x+1≧log₂(2-x)を解け。

大問2:三角関数
aを正の定数とし、関数f(θ)をf(θ)=2sin²θ+2√3sinθcosθ+a(√3sinθ+cosθ)-6a²+1とする。
(1)√3sinθ+cosθをrsin(θ+α)の形に表せ。ただし、r>0,-π<α≦πとする。
(2)t=√3sinθ+cosθとおくとき、f(θ)をtの2次式で表せ。
(3)方程式f(θ)=0(0≦θ≦π)…(*)について考える。
(i)a=1のとき、(*)を解け。
(ii)(*)の異なる解の個数がちょうど2個となるようなaの値の範囲を求めよ。

大問3:場合の数
A,B,Cの3人を含む9人の生徒について考える。
(1)4人と5人の2つの組に分けるとき、分け方は何通りあるか。
(2)3人ずつ3つの組に分けるとき、
(i)分け方は全部で何通りあるか。
(ii)AとBが同じ組に入る分け方は何通りあるか。
(3)「9人を3人ずつ3つの班に分けて、それぞれの班で1人ずつ班長を選ぶこと」を班決めということにする。その際、AとBが同じ班に入るときAは班長になることができず、BとCが同じ班に入るときBは班長になることができないものとする。
(i)AとBが同じ班に入り、Cは別の班に入る班決めの仕方は何通りあるか。
(ii)班決めの仕方は全部で何通りあるか。

大問4:微分法
t>0とする。f(x)=x⁴-6x²とし、曲線C:y=f(x)上の点P(t,f(t))におけるCの接線をlとする。
(1)t=1のときのlの方程式を求めよ。また、このときlとCのP以外の共有点の座標を求めよ。
(2)lとCがP以外に異なる2つの共有点をもつようなtの値の範囲を求めよ。
(3)(2)のとき、lとCのP以外の2つの共有点をQ(α,f(α)), R(β,f(β))(a<β)とし、3点P, Q, RにおけるCの接線の傾きをそれぞれmP、mQ、mRとする。このとき、mP+mQ+mRのとり得る値の範囲を求めよ。

大問5:数列
数列{a[n]}(n=1,2,3,…)は公差が正の等差数列でa₁+a₂+a₃=-3. a₁a₃=-3を満たし、数列{b[n]}は
b₁=-1, b[n+1]=│b[n]│+a[n] (n=1,2,3,…)を満たしている。
(1)数列{a[n])の一般項を求めよ。
(2)b₂、b₃を求めよ。また、b≧0となるようなnの値の範囲を求めよ。
(3)n≧4のとき、数列{b[n]}の一般項を求めよ。
(4)n≧4のとき、∑[k=1~n]b[k]を求めよ。
チャプター:

0:00 オープニング
0:05 大問1の問題文
0:10 (1)余弦定理
0:50 (1)内接円の半径
1:47 (2)2次方程式
3:17 (3)3次方程式
5:19 (4)点と直線の距離
7:01 (5)指数方程式
8:05 (6)対数不等式
9:46 大問2の問題文
9:51 (1)三角関数の合成
11:00 (2)tへの置換
12:17 (3-i)三角方程式、a=1のとき
14:25 (3-ii)三角方程式、解が2個のとき
17:55 大問3の問題文
18:00 (1)9人を4人と5人に分ける
18:32 (2-i)9人を3人ずつ3組に分ける
19:12 (2-ii)AとBが同じ組になる
19:55 (3-i)班決め、AとBが同じ組
22:37 (3-ii)班決めは全部で何通り
24:48 大問4の問題文
24:53 (1)接線の方程式との交点
28:04 (2)4次関数と接線が3点で交点を持つとき
31:43 (3)3点の接点における傾きの和
36:03 大問5の問題文
36:08 (1)等差数列の一般項
38:12 (2)bnが正になるとき
39:57 (3)bnの一般項
42:21 (4)bnの和
44:55 エンディング

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)AB=15, AC=7, ∠BAC=60°の△ABCがある。辺BCの長さと△ABCの内接円の半径を求めよ。
(2)aを実数の定数とする。xの2次方程式x2-ax-a-9=0が-2より小さい解と3より大きい解をもつようなの値の範囲を求めよ。
(3)方程式x3+3x2+2x-6=0を複素数の範囲で解け。
(4)座標平面上の直線y=x上の点で、直線x+2y-4=0までの距離が√5である点の座標をすべて求めよ。
(5)方程式4^(x+1)+7・2^x-2=0を解け。
(6)不等式log₂x+1≧log₂(2-x)を解け。

大問2:三角関数
aを正の定数とし、関数f(θ)をf(θ)=2sin²θ+2√3sinθcosθ+a(√3sinθ+cosθ)-6a²+1とする。
(1)√3sinθ+cosθをrsin(θ+α)の形に表せ。ただし、r>0,-π<α≦πとする。
(2)t=√3sinθ+cosθとおくとき、f(θ)をtの2次式で表せ。
(3)方程式f(θ)=0(0≦θ≦π)…(*)について考える。
(i)a=1のとき、(*)を解け。
(ii)(*)の異なる解の個数がちょうど2個となるようなaの値の範囲を求めよ。

大問3:場合の数
A,B,Cの3人を含む9人の生徒について考える。
(1)4人と5人の2つの組に分けるとき、分け方は何通りあるか。
(2)3人ずつ3つの組に分けるとき、
(i)分け方は全部で何通りあるか。
(ii)AとBが同じ組に入る分け方は何通りあるか。
(3)「9人を3人ずつ3つの班に分けて、それぞれの班で1人ずつ班長を選ぶこと」を班決めということにする。その際、AとBが同じ班に入るときAは班長になることができず、BとCが同じ班に入るときBは班長になることができないものとする。
(i)AとBが同じ班に入り、Cは別の班に入る班決めの仕方は何通りあるか。
(ii)班決めの仕方は全部で何通りあるか。

大問4:微分法
t>0とする。f(x)=x⁴-6x²とし、曲線C:y=f(x)上の点P(t,f(t))におけるCの接線をlとする。
(1)t=1のときのlの方程式を求めよ。また、このときlとCのP以外の共有点の座標を求めよ。
(2)lとCがP以外に異なる2つの共有点をもつようなtの値の範囲を求めよ。
(3)(2)のとき、lとCのP以外の2つの共有点をQ(α,f(α)), R(β,f(β))(a<β)とし、3点P, Q, RにおけるCの接線の傾きをそれぞれmP、mQ、mRとする。このとき、mP+mQ+mRのとり得る値の範囲を求めよ。

大問5:数列
数列{a[n]}(n=1,2,3,…)は公差が正の等差数列でa₁+a₂+a₃=-3. a₁a₃=-3を満たし、数列{b[n]}は
b₁=-1, b[n+1]=│b[n]│+a[n] (n=1,2,3,…)を満たしている。
(1)数列{a[n])の一般項を求めよ。
(2)b₂、b₃を求めよ。また、b≧0となるようなnの値の範囲を求めよ。
(3)n≧4のとき、数列{b[n]}の一般項を求めよ。
(4)n≧4のとき、∑[k=1~n]b[k]を求めよ。
投稿日:2025.01.15

<関連動画>

2024年度第1回K塾記述模試数学Ⅲ型全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【1】
(1) 不等式$2| x-2|-x≦$4を解け。
(2) 関数$f(x)=\log_{ 2 } (x-1)+2\log_{ 4 } (3-2x)$の最大値を求めよ。
(3) 曲線$y=x^3+2x^2$とx軸によって囲まれた部分の面積を求めよ。
(4) $\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{4k^2-1}$をnを用いて表せ。
(5) $OA=2,OB=3,∠AOB=60°$である三角形$OAB$において辺$AB$を$1:3$に内分する点を$C$とする。
(ⅰ) $OC$を$OA,OB$を用いて表せ。
(ⅱ) $|OC|$を求めよ。


【2】
1個のサイコロを繰り返し振る。$k$回目($k=1,2,3,…$)に奇数の目が出たら、その目の数を$x_k$とし、偶数の目が出たら、その目の数を2で割った商を$x_k$とする。 $S_n=x_1+x_2+x_3+…+x_n$ ($n=1,2,3,…$) と定める。
(1) $S_1=3$ である確率、$S_2=6$ である確率をそれぞれ求めよ。
(2) $S_4=12$ である確率を求めよ。
(3) $S_4=12$ であったとき、$S_2=6$ である確率を求めよ。

【3】
$A$を正の定数とし、$0\leqq\theta\lt 2\pi$において、$\theta$の方程式 $a\sin2\theta-2a^2\cos\theta-\sin\theta+a=0$  …(*) を考える。
(1) $a=1$のとき、(*)を解け。
(2) (*)がちょうど3つの解をもつような$a$の値を求めよ。
(3) (*)がちょうど4つの解をもつとする。4つの解のうち、最小のものを$\alpha$、最大のものを$\beta$とするとき、$\alpha+\beta$の値を求めよ。


【4】
$xy$平面上において、連立不等式 $x\geqq 0,y\geqq 0,x+y\leqq 1$ で表された領域を$D$とする。
(1) 点P($x,y$)が$D$上を動くとき $X=2x-6y,Y=5x+y$ によって定められる点$Q$($X,Y$)が存在する領域を$XY$平面上図示せよ。
(2) $a$を実数の定数とする。点$P$($x,y$)が$D$上を動くとき   $(2x-6y-a)^2+(5x+y)^2$ の最大値を$a$を用いて表せ。


【5】
平面上に直線lとそれに接する半径1の円$C_1$がある。$C_1$の右側にあり、$C_1$と$l$に接する円を$C_2$とする。 $C_n$の中心を$A_n$,半径を$r_n,C_n$と$l$の接点を$B_n$とすると $A_nB_n:A_nA_(n+1)=1:p$ が成り立っている。ただし、$p$は$1\lt p\lt 2$を満たす定数とする。
(1) $r_(n+1)$を$r_n$,$p$を用いて表し、$r_n$求めよ。 また、$Σr_n=3$となるような$p$の値を求めよ。
(2) $p$を(1)で求めた値とする。
(ⅰ) $\ B_nB_{n+1}$を求めよ
(ⅱ) 極限値$\displaystyle\lim_{n\to\infty}{B_1B_n}$を求めよ
(ⅲ) $\alpha=\displaystyle\lim_{n\to\infty}{B_1B_n}$とし、$\beta$を正の定数とする。   極限$\displaystyle\lim_{n\to\infty}(B1Bn-\alpha)\beta n$が0以外の値に収束するよう$\beta$の値と、そのときの極限値を求めよ。


【6】
$a$を正の定数とし、$i$を虚数単位とする。複素数$z$に関する2つの方程式 $z^3=-8i$…①   $z^2-2az+8=0$…②   を考える。
(1) ①を満たす$z$について、$z$の極形式を $z=r(\cos\theta+i\sin\theta)r\gt 0,0\leqq\theta\lt 2\pi$ と表すとき、$r,\theta$の値を求めよ。
(2) ②が異なる2つの虚数解$\alpha,\beta$を持ち、複素数平面上で3点$0,\alpha,\beta$を頂点とする三角形の面積が4であるとする。ただし、($\alpha$の虚部)>($\beta$の虚部)。 (ⅰ) $a$の値と$\alpha,\beta$を求めよ。
(ⅱ)偏角を0以上$2\pi$未満の値で考えるとき,①の解のうち偏角が最大であるものを$γ$とする。複素数平面上で3点$\alpha,\beta,γ^n$を頂点とする三角形の内部に原点が存在するような正の整数$n$を求めよ。
この動画を見る 

【高校数学】2023年度 第1回 高2K塾記述模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1問:小問集合
次の□にあてはまる数または式を求めよ.
(1)$(x^2+x)(x^2+x-3)$を展開すると、$\Box$となる.
(2)$2x^2-5xy-3y^2$を因数分解すると、$\Box$となる.
(3)$\alpha=3+\sqrt6、\beta=3-\sqrt6$について、$\alpha\beta$の値は$\Box$であり、$\Box$である.
(4)$\theta$は鋭角とする.$\tan\theta=\sqrt3$のとき、$\cos\theta=\Box$である.
(5)不等式$-x\lt 3x-4\lt x$の解は$\Box$である.
(6)次のデータがある。$6,3,5,2,2,7,1,4,8$ このデータの第3四分位数は$\Box$であり、四分位範囲は$\Box$である.

第2問[1]:図形と計量
三角形$ABC$があり、$AB=4,AC=5,\cos\angle BAC=\dfrac{1}{8}$である。
(1)$\sin\angle BAC$の値を求めよ。また、辺$BC$の長さを求めよ。
(2)辺$AC$(両端を除く)上に点$D$をとり、三角形$BCD$の外接円の半径を$R$とする。
(i)$\angle BDC=\theta$とおくとき、$\sin\theta$を$R$を用いて表せ.
(ii)$R=4$のとき、線分$BD$の長さと線分$AD$の長さを求めよ.

[2]:場合の数
1個のサイコロを4回振り、出た目の数を左から順に並べて4桁の整数Nを作る。例えば、1個のサイコロを4回振り、出た目の数が順に$1,2,3,4$である場合は$N=1234$となる。 
(1)$N$は全部で何個できるか.
(2)$2126,3335$のように、同じ数を含む$N$は何個できるか.
(3)$4321$より大きい$N$は何個できるか.

第3問:2次関数
$x$の2次関数$f(x)=x^2-2x+2$があり、放物線$y=f(x)$を$C_1$とする。
(1)(i)$C_1$の座標を求めよ。
(ii)$0\leqq x\leqq 4$における$f(x)$の最大値と最小値を求めよ。
(2)$p$を正の整数とする。$C_1$を$x$軸の方向に$p$、$y$軸方向に$-p$だけ平行移動した放物線を$C_2$とし、$C_2$の方程式を$y=g(x)$とする。
(i)$C_2$の頂点の座標を求めよ。
(ii)$0\leqq x\leqq 4$における$g(x)$の最小値を$m$とする。$m$を$p$を用いて表せ。
(iii)次の2つの条件(A),(B)がともに成り立つような$p$の値の範囲を求めよ。
  (A)$0\leqq x\leqq 4$を満たすすべての実数$x$に$g(x)\gt 0$
(B)$0\leqq x\leqq 4$を満たすある実数xに対して$g(x)\gt 8$

第4問:複素数と方程式
$a,b$を実数の定数とし、$c$を0でない実数の定数とする。2つの2次方程式
$x^2-6x+10=0$ …①
$x^2-ax+b=0$ …②
があり、②の2つの解は$1+ci、1-ci$である。ただし、$i$は虚数単位である。
(1)①を解け。
(2)$a$の値を求めよ。また、$b$を$c$を用いて表せ。
(3)$d$を実数の定数とする。多項式$P(x)$があり、$P(x)$を2次式$x^2-ax+b=0$で割ると、商は $x^2-6x+10=0$、余りは$cx+d$である。
 (i)$P(1+ci)$を$p+qi$ ($p,q$は実数であり、いずれも$c,d$で表された式)の形で表せ。
 (ii)①の2つの解を$\alpha,\beta$と表し、複素数の集合$A,B$を
 $A={\alpha,\beta,1+ci,1-ci}、B={P(\alpha),P(\beta),P(1+ci),P(1-ci)}$
 と定める。$A=B$となるような$b,c,d$の組($b.c,d$)をすべて求めよ。ただし、$A=B$とは、$A$の要素と$B$の要素がすべて一致することである。

第5問:確率
1が書かれた赤色、白色、青色のカードが1枚ずつ、2が書かれた赤色、白色、青色のカードが1枚ずつ、3が書かれた赤色、白色、青色のカードが1枚ずつ、4が書かれた赤色、白色、青色のカードが1枚ずつ、計12枚のカードが袋の中に入っている。この袋から無作為に3枚のカードを同時に取り出す。
(1)取り出した3枚のカードに書かれた数がすべて同じ数である確率を求めよ。
(2)取り出した3枚のカードに書かれた数がすべて異なる数である確率を求めよ。
(3)取り出した3枚のカードに書かれた数の和が3の倍数である確率を求めよ。
(4)取り出した3枚のカードに書かれた数の和が3の倍数であるとき、その3枚のカードの中に赤色のカードが含まれている条件付き確率を求めよ。
この動画を見る 

河合塾講師のストで荻野先生が炎上 #shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#情報Ⅰ(高校生)#全統模試(河合塾)#英語(高校生)#大学入試過去問(英語)#全統模試(河合塾)#数学(高校生)#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師: Morite2 English Channel
問題文全文(内容文):
緊急速報!河合塾講師のストライキ問題が飛び火!なぜかあの予備校講師が**炎上**する事態に!

人気YouTubeチャンネル「Morite2 English Channel」が、先日投稿した**塾講師のストライキ動画**に寄せられたコメントが波紋を呼んでいる。なんと、予備校の**荻野(おぎの)先生**が「炎上」しているというのだ!

炎上のきっかけは、荻野先生がSNS(X)で「**生徒に迷惑をかけたらダメ**」と投稿したこと。生徒にとっては授業をしないことは迷惑がかかる、という予備校講師目線、生徒目線からの当然の意見だった。授業が中断されれば進度が遅れる可能性もあるからだ。

ところがこれに対し、「**ストライキは迷惑をかけなきゃ意味がない**」といったコメントが殺到!労働者として生きる社会人から見れば、消費者側に迷惑がかかるのが「スト」なのだ、という意見がぶつけられた形だ。

荻野先生からすると、「あんたたちの目線で予備校や教育業界を語るな」ということだろう。これは、予備校講師目線と、労働者(社会人)目線という、**目線が全く違う**ために、折り合いがつくわけがない状況だという。

この動画では、交渉や条件という意味を持つ重要な単語「**terms**」について、「**come to terms**(折り合いがつく)」という形で出題されやすいと解説し、受験生への学習アドバイスも添えられている。

このストライキ論争、あなたはどちらの意見に共感する?予備校業界を揺るがす議論から目が離せない!
この動画を見る 

【数Ⅰ】高2生必見!!2020年度 第2回 K塾高2模試 大問2-2_図形と計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCにおいて、$AB=7、BC=8、CA=3$とする。
(1)$\cos\angle BAC$の値を求めよ。
(2)三角形ABCの面積を求めよ。
(3)三角形ABCの外接円において、点Aを含まない方の弧BC上に、$ \sin\angle BCP:\sin\angle CBP=1:3$となるように点Pをとる。
このとき、線分BPの長さと四角形 ABPCの面積を求めよ。
この動画を見る 

【2018年5月K塾マーク】全教科概観~数学でとれなかったのは仕方ない?!~全国模試1位の勉強法【篠原好】

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
数学でとれなかったのは仕方ない?!
「2018年5月全統マーク」についてお話しています。
この動画を見る 
PAGE TOP