【受験算数】A, B, C, D, E, F, Gの7人が旅行に行き、旅館にとまることになりました。旅館では、3人がとまれる「鶴の間」と、4人がとまれる「亀の間」の2部屋に分かれてとまることにします… - 質問解決D.B.(データベース)

【受験算数】A, B, C, D, E, F, Gの7人が旅行に行き、旅館にとまることになりました。旅館では、3人がとまれる「鶴の間」と、4人がとまれる「亀の間」の2部屋に分かれてとまることにします…

問題文全文(内容文):
A, B, C, D, E, F, Gの7人が旅行に行き、旅館にとまることになりました。旅館では、3人がとまれる「鶴の間」と、4人がとまれる「亀の間」の2部屋に分かれてとまることにします。これについて、次の問いに答えなさい。
(1)とまり方は何通りありますか。
(2)AとBが同じ部屋になるとまり方は何通りありますか。
チャプター:

0:00 スタート
0:13 (1)解説
0:38 (2)解説
1:51 エンディング

単元: #算数(中学受験)#場合の数#場合の数
教材: #予習シ#予習シ算数・小5上#中学受験教材#場合の数
指導講師: 理数個別チャンネル
問題文全文(内容文):
A, B, C, D, E, F, Gの7人が旅行に行き、旅館にとまることになりました。旅館では、3人がとまれる「鶴の間」と、4人がとまれる「亀の間」の2部屋に分かれてとまることにします。これについて、次の問いに答えなさい。
(1)とまり方は何通りありますか。
(2)AとBが同じ部屋になるとまり方は何通りありますか。
投稿日:2026.01.24

<関連動画>

【小5 算数】  小5-②③ 約数→公約数→最大公約数

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#約数・倍数を利用する問題
指導講師: とある男が授業をしてみた
問題文全文(内容文):
小5 算数 約数→公約数→最大公約数
[解説]
約数 12 →  20 →  
公約数 ( 12, 20 ) →
[問題]
最大公約数をもとめよう!
① ( 6, 16 )
② ( 30 , 45 )
③ ( 12 , 33 , 45 )
※図は動画内参照
この動画を見る 

円が絡んだ良問3選!○○のテクニックを使えば5秒!【毎日1題中学受験算数81】

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積
指導講師: こばちゃん塾
問題文全文(内容文):
1⃣斜線部分の面積は?

2⃣斜線部分の面積は?

*図は動画内参照
この動画を見る 

2025年筑波大学附属駒場中入試問題算数大問① 中学受験指導歴20年以上プロ塾講師のじっくり解説

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#筑波大学附属駒場中学#筑波大学附属中学
指導講師: 重吉
問題文全文(内容文):
[1] 1から9までの整数のうち、いずれか1つが
書かれたカードがあります。
これらのカードを、右の図のようにならんだア~ケのマス目に1枚ずつ置くことを考えます。
ただし、
アには 123 の3枚のカードから1枚を
イウエには 445566の6枚のカードから3枚を
オカキクケには 777888999 の9枚のカードから5枚を
それぞれ選んで置くものとします。
ここでは、たとえばアのマス目に置いたカードのことを、アのカードということにします。 次の問いに答えなさい。

(1)ア、ウ、キのカードに書かれた3つの数について考えます。
ア、ウ、キのカードに書かれた3つの数の合計が、3の倍数となりました。
このような3枚のカードの置き方として、考えられるものは全部で何通りありますか。
ただし、同じ数が書かれたカードどうしは区別しないものとします。

(2)ア、イ、ウ、エ、キのカードに書かれた5つの数について考えます。
ア、ウ、キのカードに書かれた3つの数の合計と、
イ、ウ、エのカードに書かれた3つの数の合計が、どちらも3の倍数となりました。
このような5枚のカードの置き方として、考えられるものは全部で何通りありますか。
ただし、同じ数が書かれたカードどうしは区別しないものとします。

(3) ア~ケのカードに書かれた9つの数について考えます。
ア、ウ 、キのカードに書かれた3つの数の合計、
イ、ウ、エのカードに書かれた3つの数の合計、
オ、カ、キ、ク、ケのカードに書かれた5つの数の合計が、すべて3の倍数となりました。
このような9枚のカードの置き方として、考えられるものは全部で何通りありますか。
ただし、同じ数が書かれたカードどうしは区別しないものとします。
この動画を見る 

中学受験算数「倍数変化算(倍数算の応用)②」小学4年生~6年生対象【毎日配信】

アイキャッチ画像
単元: #算数(中学受験)#文章題#和差算・植木算・分配算・倍数算・年齢算・相当算・つるかめ算
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
第24回倍数変化算(倍数算の応用)②

例題
A君とB君の所持金の比は、7:5でしたが、A君は150円B君は300円もらったので、A君とB君の所持金の比 になりました。
はじめA君とB君は何円持っていましたか。
この動画を見る 

この数字見たら血吸いたくなるん?

アイキャッチ画像
単元: #計算と数の性質#数の性質その他
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ヴァンパイア数について解説していきます。
この動画を見る 
PAGE TOP