指数・対数が共テ向きに「理解」できる動画 - 質問解決D.B.(データベース)

指数・対数が共テ向きに「理解」できる動画

問題文全文(内容文):
指数・対数の解説動画です
単元: #指数関数と対数関数#数学(高校生)#数学#共通テスト
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
指数・対数の解説動画です
投稿日:2023.08.24

<関連動画>

【日本最速解答速報】2024年星薬科大学薬学部薬学科(6年制) 学校推薦型選抜 数学 解答速報【TAKAHASHI名人】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大学入試解答速報#数学#星薬科大学#星薬科大学
指導講師: 理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2023年11月26日(日)に実施された、2024年星薬科大学薬学部薬学科(6年制)学校推薦型選抜の数学解答速報です。

大学の正解発表ではなく、あくまで当チャンネルの講師が独自に解説をしているものですので、万が一内容に間違いがございましたらご容赦ください。

解説者は理数個別指導学院センター南校のTAKAHASHI名人です。
https://www.youtube.com/playlist?list=PLdLgDY469Qr7UEbDX8OecmSefwQulR35t
この動画を見る 

東大芸人TAWASHIの共通テスト模試結果発表

アイキャッチ画像
単元: #社会(高校生)#日本史#世界史#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#数学#共通テスト#英語#化学#物理#共通テスト#共通テスト#共通テスト
指導講師: Morite2 English Channel
問題文全文(内容文):
東大受験芸人のTAWASHIさんが共通テスト全教科を解いた後に、結果発表をします。

果たして何点取れたのでしょうか!
この動画を見る 

2024年共通テスト徹底解説〜数学ⅠA第2問(2)データの分析〜福田の入試問題解説

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅠA第2問(2)データの分析を徹底解説します

2024共通テスト過去問
この動画を見る 

2024年共通テスト速報〜数学ⅠA第1問の(1)〜福田の入試解説

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
$n \lt 2\sqrt{ 13 } \lt n+1$を満たす整数nはアである。
実数a,bを$a=2\sqrt{ 13 }$-ア,b=$\frac{1}{a}$で定める。このとき
$b=\frac{イ+2\sqrt{13}}{ウ}$である。また、$a^2-9b^2=エオカ\sqrt{13}$である。
①(7$\lt 2\sqrt{13} \lt 8$)から$\frac{7}{2} \lt \sqrt{13} \lt 4$が成り立つ。
①と④($b=\frac{7+2\sqrt{13}}{3}$)から$\frac{m}{ウ} \lt b \lt \frac{m+1}{ウ}$を満たすmはキク
よって③($b=\frac{1}{a}$)から$\frac{a}{15} \lt a \lt \frac{ウ}{14}$・・・⑥が成り立つ。
$\sqrt{13}$の整数部分はケであり、②($a=2\sqrt{13}-7$)と⑥から$\sqrt{13}$の小数点第1位の数字はコ、小数点第2位の数字はサである。

2024共通テスト過去問
この動画を見る 

福田の数学〜明治大学2021年理工学部第2問〜格子点と確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#大学入試解答速報#数学#明治大学#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} nを正の整数とする。座標平面上の点でx座標とy座標がともに整数であるもの\hspace{40pt}\\
を格子点と呼ぶ。|x|+|y|=2n\ を満たす格子点(x,\ y)全体の集合をD_{2n}とする。\\
(1)D_4は\ \boxed{\ \ あ\ \ }\ 個の点からなる。一般に、D_{2n}は\ \boxed{\ \ い\ \ }\ 個の点からなる。\\
(2)D_{2n}に属する点(x,\ y)で|x-2n|+|y|=2nを満たすものは全部で\ \boxed{\ \ う\ \ }\ 個ある。\\
(3)D_{2n}に属する点(x,\ y)で|x-n|+|y-n|=2nを満たすものは全部で\ \boxed{\ \ え\ \ }\ 個ある。\\
(4)D_{2n}から異なる2点(x_1,\ y_1),\ (x_2,\ y_2)を無作為に選ぶとき、\\
|x_1-x_2|+|y_1-y_2|=2n\\
が成り立つ確率は\ \boxed{\ \ お\ \ }\ である。
\end{eqnarray}

2021明治大学理工学部過去問
この動画を見る 
PAGE TOP