【数学】2022年度 第2回 K塾記述高2模試 全問解説(ベクトルはおまけ) - 質問解決D.B.(データベース)

【数学】2022年度 第2回 K塾記述高2模試 全問解説(ベクトルはおまけ)

問題文全文(内容文):
2022年度第2回K塾記述高2模試全問解説動画です!
チャプター:

0:00 オープニング
0:05 大問1の問題文
0:15 (1)解説:展開
0:44 (2)解説:分数式
1:50 (3)解説:2次関数の最小値
3:27 (4)解説:複素数の有理化
4:51 (5-1)解説:余弦定理
6:13 (5-2)解説:正弦定理
8:13 (6)解説:場合の数
9:43 名言
9:53 大問2-1の問題文
10:03 (1)解説:2次不等式
11:31 (2)解説:絶対値付きの不等式
12:17 (3)解説:整数解が1個になるとき
16:53 名言
17:03 大問2-2の問題文
17:13 (1)解説:円の中心と半径
18:19 (2-i)解説:点と直線の距離
21:32 (2-ii)解説:共有点が2個
23:28 (3)解説:弦の長さが同じ
28:02 名言
28:12 大問3の問題文
28:22 (1)解説:剰余の定理
29:16 (2)解説:高次方程式
31:17 (3)解説:式の値
34:17 (4)解説:因数定理
38:35 名言
38:45 大問4の問題文
38:55 (1-i)解説:Pの座標が6になるとき
40:47 (1-ii)解説:Pの座標が4になるとき
41:58 (2-i)解説:PとQの座標がともに3になるとき
44:57 (2-ii)解説:条件付き確率
48:27 名言
48:37 大問5の問題文
48:47 (1)解説:三角方程式
50:55 (2)解説:加法定理
52:40 (3)解説:三角不等式
54:00 (4-i)解説:解が6個になるとき
56:52 (4-ii)解説:aの範囲は?
1:01:28 名言
1:01:38 大問6の問題文
1:01:48 (1)解説:等差数列
1:03:38 (2)解説:等比数列
1:04:58 (3-i)解説:シグマ展開、BBB
1:07:25 (3-ii)解説:等差×等比の和
1:11:38 (4)解説:式変形
1:16:19 名言
1:16:29 大問7の問題文
1:16:39 (1)解説:位置ベクトル
1:19:40 (2-i)解説:一直線は実数倍
1:21:30 (2-ii)解説:係数比較
1:24:23 (3)解説:面積比
1:28:50 名言

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2022年度第2回K塾記述高2模試全問解説動画です!
投稿日:2023.08.01

<関連動画>

2020年度第4回K塾記述高2模試全問解説 #shorts #K塾模試 #りすうこべつチャンネル

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2020年度第4回K塾記述高2模試全問解説してみた.
この動画を見る 

【数C】ベクトル:2020年第2回高2K塾記述模試の第7問を解いてみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
この動画を見る 

模試の優先順位:この模試は絶対に受けろ!【篠原好】

アイキャッチ画像
単元: #全統模試(河合塾)#全統模試(河合塾)#その他#勉強法#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#【河合塾】全統共通テスト模試#【東進】共テ本番レベル模試
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
模試の優先順位
「この模試は絶対に受けなければならない理由」についてお話しています。
この動画を見る 

【数学】(一気見用)高2生必見!! 2020年度 第2回 K塾高2模試

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)(a+3)³を展開せよ。
(2)(x-3)/(x²+x) + (x+9)/(x²+3x)を計算せよ。
(3)2次関数y=x²+2x (-2≦x≦2)における最大値をM、最小値をmとして、M-mを求めよ。
(4)iを虚数単位とする。(7+3i)/(1+i)をa+bi (a,bは実数の形で表せ。 )
(5)0°≦θ<180°、sinθ+cosθ=1/2のとき、sinθ・cosθとcosθ-sinθを求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。

大問2-1:2次関数
実数xについての2つの不等式 ax²+2ax-2a+1≦0・・・①
│x-2│≦1・・・② がある。
ただし、aは0でない実数の定数とする。
(1)a=-1のとき、①を解け。
(2)②を解け。
(3)②を満たすすべてのxが①を満たすようなaの値の範囲を求めよ。

大問2-2:図形と計量
三角形ABCにおいて、AB=7、BC=8、CA=3とする。
(1)cos∠BACの値を求めよ。
(2)三角形ABCの面積を求めよ。
(3)三角形ABCの外接円において、点Aを含まない方の弧BC上に、 sin∠BCP:sin∠CBP=1:3となるように点Pをとる。
このとき、線分BPの長さと四角形 ABPCの面積を求めよ。

大問3:確率
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。

大問4:整数の性質
(1)x,zは0以上の整数とする。
(i)z=0,1,2,3,4,5,6,7,8,9,10について、2^zを7で割ったときの余りを順に書き 並べよ。ただし、2⁰=1とする。
(ii)x,zは等式 7x=2^z+3・・・① を満たしている。0≦z≦10のとき、等式①を満たすx,zの組(x,z)をすべて求めよ。
(2)0以上の整数x,y,zが、等式 (4x+3y)(x-y)=2^z・・・② を満たしている。
(i)xが奇数、yが偶数、z=5のとき、等式②を満たすx,yの組(x,y)をすべて求めよ。
(ii)xが奇数、yが偶数、0≦z≦20のとき、等式②を満たすx,y,zの組(x,y,z)の個数 を求めよ。
(iii)z=100で、xとyは偶奇を問わないとき、等式②を満たすx,yの組(x,y)の個数 を求めよ。

大問5:式と証明、複素数と方程式
aを実数の定数とする。xの3次式 P(x)=x³+3x²+3x+a があり、P(-2)=0を満たす。
(1)aの値を求めよ。
(2)方程式P(x)=0を解け。
(3)方程式P(x)=0の虚数解のうち、虚部が正であるものをα、虚部が負であるもの をβと表す。また、方程式P(x)=0の実数解をγと表す。さらに、A=α+1、B=β+1、 C=γ+1とする。
(i)A²+B²、A³、B³の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。A^n+B^n+C^n=0を満たすnの個数を求めよ。

大問6:三角関数
θの関数 f(θ)=1/2sin2θ-√2kcos(θ-π/4)+k² がある。ただし、kは正の定数である。
(1)sin2θ,cos(θ-π/4)のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)f(θ)を(sinθ-p)(cosθ-q) (p,qは定数)の形で表せ。 (ii)k=√3/2のとき、方程式f(θ)=0を0≦θ<2πにおいて解け。
(3)θの方程式f(θ)=0が0≦θ<2πにおいて相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、θの方程式f(θ)=0の0≦θ<2πにおける最小の解をα、最大の解をβと する。α+β=5π/3となるようなkの値を求めよ。

大問7:ベクトル
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
この動画を見る 

【数Ⅱ】微分法と積分法:2021年高3第1回数台全国模試 (文理共通)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数とし、xの4次関数f(x)を$f(x)=3x^4-4(a+2)x^3+12ax^2+1$とする。次の問に答 えよ。
(1)f(x)が極大値をもつようなaの値の範囲を求めよ。
(2)(1)で求めた範囲 をaが動くとき、曲線y=f(x)において、f(x)が極大となる点の軌跡を求めよ。
この動画を見る 
PAGE TOP