【数学】2022年度 第2回 K塾記述高2模試 全問解説(ベクトルはおまけ) - 質問解決D.B.(データベース)

【数学】2022年度 第2回 K塾記述高2模試 全問解説(ベクトルはおまけ)

問題文全文(内容文):
2022年度第2回K塾記述高2模試全問解説動画です!
チャプター:

0:00 オープニング
0:05 大問1の問題文
0:15 (1)解説:展開
0:44 (2)解説:分数式
1:50 (3)解説:2次関数の最小値
3:27 (4)解説:複素数の有理化
4:51 (5-1)解説:余弦定理
6:13 (5-2)解説:正弦定理
8:13 (6)解説:場合の数
9:43 名言
9:53 大問2-1の問題文
10:03 (1)解説:2次不等式
11:31 (2)解説:絶対値付きの不等式
12:17 (3)解説:整数解が1個になるとき
16:53 名言
17:03 大問2-2の問題文
17:13 (1)解説:円の中心と半径
18:19 (2-i)解説:点と直線の距離
21:32 (2-ii)解説:共有点が2個
23:28 (3)解説:弦の長さが同じ
28:02 名言
28:12 大問3の問題文
28:22 (1)解説:剰余の定理
29:16 (2)解説:高次方程式
31:17 (3)解説:式の値
34:17 (4)解説:因数定理
38:35 名言
38:45 大問4の問題文
38:55 (1-i)解説:Pの座標が6になるとき
40:47 (1-ii)解説:Pの座標が4になるとき
41:58 (2-i)解説:PとQの座標がともに3になるとき
44:57 (2-ii)解説:条件付き確率
48:27 名言
48:37 大問5の問題文
48:47 (1)解説:三角方程式
50:55 (2)解説:加法定理
52:40 (3)解説:三角不等式
54:00 (4-i)解説:解が6個になるとき
56:52 (4-ii)解説:aの範囲は?
1:01:28 名言
1:01:38 大問6の問題文
1:01:48 (1)解説:等差数列
1:03:38 (2)解説:等比数列
1:04:58 (3-i)解説:シグマ展開、BBB
1:07:25 (3-ii)解説:等差×等比の和
1:11:38 (4)解説:式変形
1:16:19 名言
1:16:29 大問7の問題文
1:16:39 (1)解説:位置ベクトル
1:19:40 (2-i)解説:一直線は実数倍
1:21:30 (2-ii)解説:係数比較
1:24:23 (3)解説:面積比
1:28:50 名言

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2022年度第2回K塾記述高2模試全問解説動画です!
投稿日:2023.08.01

<関連動画>

【数学模試解説】2024年度第1回K塾マーク模試数Ⅰ,A(新課程)第一問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第一問

[1]方程式$9x^2-6x-1=0$の二つの実数解をα,β(α<β)とすると

$α=\displaystyle \frac{ア-\sqrt{イ}}{ウ}$,$β=\displaystyle \frac{ア+\sqrt{イ}}{ウ}$

である。

(1)$n\lt\displaystyle \frac{1}{β}\lt n+1$を満たす整数nは エ である

(2)xについての連立不等式

$\left\{
\begin{array}{l}
αx \lt 1\\
βx \lt 1
\end{array}
\right.$

を考える。
αの符号に注意すると、不等式①の解は オ と表される。
よって連立不等式①かつ②の解は カ と表される。

オ の解答群

⓪ $x\lt\displaystyle \frac{1}{α}$  ① $\displaystyle \frac{1}{α}\lt x$

カ の解答群

⓪ $x\lt\displaystyle \frac{1}{α}$  ① $\displaystyle \frac{1}{α}\lt x\lt\displaystyle \frac{1}{β}$  ② $\displaystyle \frac{1}{β}\lt x$

(3)-9以上9以下の整数のうち、(2)の連立不等式①かつ②の解の範囲に含まれるものの個数は キ 個である。

[2]△ABCにおいて、$AB=7$,$BC=3\sqrt{2}$,$CA=5$とする。このとき

$cos ∠BAC=\displaystyle \frac{ク}{ケ}$,$sin ∠BAC=\displaystyle \frac{コ}{サ}$

である。

△ABCの外接円の中心Oとすると、円Oの半径は$\displaystyle \frac{シ\sqrt{ス}}{セ}$である。
円OのAを含まない弧BC上に点Pを、△PBCの面積が最大となるようにとる。このとき

$PC=\sqrt{ソ}$

である。

また、直線AOと円Oとの交点のうち、Aと異なる方をDとすると

$CD= タ $

であり、

$∠ADC= チツ°$

である。

直線AD上に動点Qをとり、二つの線分$CQ$、$PQ$の長さの和を $L = CQ + PQ$ とする。

太郎:Lの最小値を求めるにはどうすればよいのかな。
花子:直線ADに関してCと対称な点を考えればよいね。

$AB^2\gt BC^2+CA^2$が成り立つから∠ACBは鈍角であり、直線ADに関して3 点B, C, Pがすべて同じ側にあることに注意して考えると、Lの最小値は$テ\sqrt{ト}$である。
この動画を見る 

【数A】確率:高3 5月K塾共通テスト 数学IA第3問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個のさいころを繰り返し投げ、次の規則に従って数直線上の点Pを動かす。
・原点から出発して、1回目に出た目の数だけ点Pを負の方向に動かす。
・1回目で点Pがとまった位置から出発して、2回目に出た目の数だけ点Pを正の方向に動かす。
・2回目で点Pがとまった位置から出発して、3回目に出た目の数だけ点Pを負の方向に動かす。
・以下同様に、直前の回で点Pgaとまった位置から出発して、奇数回目の移動では出た目の数だけ点Pを負の方向に動かし、偶数回目の移動では出た目の数だけ点Pを正の方向に動かす。
例えば、さいころを4回投げて順に5,5,2,6の目が出た場合、点Pの座標は順に、-5,0,-2,4となる。
(1)2回目の移動後に点Pの座標が0となる確率は(ア)/(イ)、4となる確率は(ウ)/(エオ)、5となる確率は(カ)/(キク)である。
(2)4回目の移動後に点Pの座標が9となるのは、点Pの座標が2回目の移動後に(ケ)となり、4回目の移動後に9となる場合、または点Pの座標が2回目の移動後に(コ)となり、4回目の移動後に9となる場合のいずれかである。ただし、(ケ)と(コ)の順序は問わない。
よって、4回目の移動後に点Pの座標が9となる確率は(サ)/(シスセ)である。
また、4回目の移動後に点Pの座標が9であったとき、3回目の移動後の点Pの座標が4である条件付き確率は(ソ)/(タ)である。
(3)7回目の移動後に点Pの座標が13となる確率は(チ)/(ツ)^(テ)である。
この動画を見る 

【数Ⅱ】三角関数:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは実数の定数とし、$0\leqq\theta\lt 2\pi$とする。次の2つの式を考える。
$8a\cos\theta- 8\cos2\theta=a^2+7$…①
$\sin\theta-\cos\theta\gt-1$…②
(1)a=1のとき、方程式①を解け。
(2)不等式②を 解け。
(3)(2)で求めた範囲に①の異なる解がちょうど3個存在するようなaの値の 範囲を求めよ。
この動画を見る 

【数Ⅱ】 微分法と積分法:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数f(x)を次の式で定める。ただし、kは正の定数である。$f(x)=kx^3-4x^2+x+k^2$ 原点をOとする座標平面上において、曲線$C:y=f(x)$とy軸の交点をAとし、Aにお けるCの接線と垂直でAを通る直線をlとする。
(1)lの方程式を求めよ。
(2)Cとlが A以外に2点で交わるとする。このとき、kの値の範囲を求めよ。
(3)(2)のとき、CとlのA以外の2交点をP、Qとし、三角形OPQの面積をSとする。kが(2)で求めた範 囲を変化するとき、Sの最大値を求めよ。
この動画を見る 

【数Ⅱ】高2生必見!! 2020年度 第2回 K塾高2模試 大問6_三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\theta$の関数。 $f(\theta)=\dfrac{1}{2\sin2\theta}-\sqrt2k\cos(θ-\dfrac{\pi}{4})+k^2$ がある。ただし、kは正の定数である。
(1)$\sin2\theta,\cos(\theta-\dfrac{\pi}{4})$のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)$f(\theta)$を$(\sin\theta-p)(\cos\theta-q)$ (p,qは定数)の形で表せ。 $(ii)k=\dfrac{\sqrt3}{2}$のとき、方程式$f(\theta)=0$を$0\leqq \theta\lt 2\pi$において解け。
(3)$\theta$の方程式$f(\theta)=0$が$0\leqq\theta\lt 2\pi$において相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、$\theta$の方程式$f(\theta)=0$の$0\leqq\theta\lt 2\pi$における最小の解を$\alpha$、最大の解を$\beta$と する。$\alpha+\beta=\dfrac{5\pi}{3}$となるようなkの値を求めよ。
この動画を見る 
PAGE TOP