【高校受験対策】数学-図形18 - 質問解決D.B.(データベース)

【高校受験対策】数学-図形18

問題文全文(内容文):
①右の図1のような$\triangle ABC$があります。
点$D、E$はそれぞれ辺$AB、BC$上の点で、$\angle BDE =\angle ACB$です。
$AD = 2cm 、 DB = 8cm 、 BE = 6cm$のとき、$EC$の長さを求めなさい。

② 右の図2は、正方形$ABCD$と、おうぎ形$BAC$、おうぎ形$CBD$を組み合わせたものです。
点$E$は$\stackrel{\huge\frown}{AC}$と$\stackrel{\huge\frown}{BD}$との交点です。
正方形$ABCD$の1辺の長さが$12cm$のとき、$\stackrel{\huge\frown}{BE}$の長さを求めなさい。 ただし、円周率は$\pi$とします。

③右の図3のような四角形$ABCD$があり、対角線$AC$と対角線$BD$との交点を$E$とする。
線分$BE$上に、2点$B、E$と異なる点$F$をとり、直線$AF$と辺$BC$との交点を$G$とする。
四角形$ABCD$の面積が$50cm²$、$△AGC$の面積が$30cm$、
$BF:FD=3:4、AF:FG=2:1$であるとき、$△ACD$の面積は何$cm^2$か。

図は動画内参照
単元: #数学(中学生)#中1数学#中2数学#中3数学#円#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の図1のような$\triangle ABC$があります。
点$D、E$はそれぞれ辺$AB、BC$上の点で、$\angle BDE =\angle ACB$です。
$AD = 2cm 、 DB = 8cm 、 BE = 6cm$のとき、$EC$の長さを求めなさい。

② 右の図2は、正方形$ABCD$と、おうぎ形$BAC$、おうぎ形$CBD$を組み合わせたものです。
点$E$は$\stackrel{\huge\frown}{AC}$と$\stackrel{\huge\frown}{BD}$との交点です。
正方形$ABCD$の1辺の長さが$12cm$のとき、$\stackrel{\huge\frown}{BE}$の長さを求めなさい。 ただし、円周率は$\pi$とします。

③右の図3のような四角形$ABCD$があり、対角線$AC$と対角線$BD$との交点を$E$とする。
線分$BE$上に、2点$B、E$と異なる点$F$をとり、直線$AF$と辺$BC$との交点を$G$とする。
四角形$ABCD$の面積が$50cm²$、$△AGC$の面積が$30cm$、
$BF:FD=3:4、AF:FG=2:1$であるとき、$△ACD$の面積は何$cm^2$か。

図は動画内参照
投稿日:2017.12.26

<関連動画>

【中学数学】座標上の四角形の面積の裏技~一瞬で求めよう~【中1数学】

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
座標上の四角形の面積の裏技紹介動画です
この動画を見る 

中1数学「項と係数」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
項と係数に関して解説していきます。
この動画を見る 

円と角の和

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中1数学#平面図形#角度と面積#平面図形
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x+ \angle y= ?$
*図は動画内参照
この動画を見る 

平方根と式の値 2025昭和学院秀英

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: 数学を数楽に
問題文全文(内容文):
a=2025,b=118
√(a^2+b^2+2ab+4a+4b+4)=?
この動画を見る 

【高校受験対策】数学-死守34

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守34

①$(-8)+(-4)$

②$-\frac{5}{7}+\frac{2}{3}$

③$65a^2b \div5a$

④$\frac{18}{\sqrt{2}}-\sqrt{98}$

⑤$(x+9)^2-(x-3)(x-7)$

⑥$(x+4)^2-2(x+4)-24$を因数分解しなさい。

⑦2次方程式$6x^2-2x-1=0$を解きなさい。

⑧関数$y=ax^2$について、$x$の値が$2$から$5$まで増加するときの変化の割合が$ー4$であった。このときの$a$の値を求めなさい。

④1本$a$円のえんぴつを9本と1個100円の消しゴムを1個買って1000円を支払い、おつりを受け取った。
このときの数量の関係を不等式で表しなさい。ただし、右辺は1000だけとする。

⑩$\sqrt{53-2n}$が整数となるような正の整数$n$をすべて書きなさい。


Aさんの家からバス停までの道のりは$a$km、バス停から駅までの道のりは$b$kmである。Aさんが、Aさんの家からバス停までは時速4kmで歩き、バス停から駅までは時速30kmで走るバスに乗ったところ、 Aさんの家から駅まで$t$時間かかった。
このとき、$t$を$a$と$b$を使った式で表しなさい。 ただし、バス停でバスを待つ時間は考えないものとする。



右の度数分布表は、あるクラスの生徒20人のハンドボール投げの記録をまとめたものである。この度数分布表から求められる記録の平均値を求めなさい。
この動画を見る 
PAGE TOP