【受験算数】図形の移動(1):(練習❸)台形の面積比は上底+下底【予習シリーズ算数・小5下】 - 質問解決D.B.(データベース)

【受験算数】図形の移動(1):(練習❸)台形の面積比は上底+下底【予習シリーズ算数・小5下】

問題文全文(内容文):
右図のような台形ABCDがあります。点PはAを出発して、毎秒3cmの速さで辺AD上を往復します。また、点Qは点Pと同時にBを出発して、毎秒5cmの速さで辺BC上を往復します。これについて、次の問いに答えなさい。
(1)直線PQがはじめて台形ABCDの面積を2等分するのは、点P、Qが出発してから何秒後ですか。
(2)直線PQが2回目に台形ABCDの面積を2等分するのは、2点P、Qが出発してから何秒後ですか。
チャプター:

0:00 オープニング
0:05 問題文
0:20 問題解説(1)
1:54 問題解説(2)
3:26 名言
3:36 エンディング

単元: #算数(中学受験)#平面図形#図形の移動
教材: #予習シ#予習シ算数・小5下#中学受験教材#図形の移動
指導講師: 理数個別チャンネル
問題文全文(内容文):
右図のような台形ABCDがあります。点PはAを出発して、毎秒3cmの速さで辺AD上を往復します。また、点Qは点Pと同時にBを出発して、毎秒5cmの速さで辺BC上を往復します。これについて、次の問いに答えなさい。
(1)直線PQがはじめて台形ABCDの面積を2等分するのは、点P、Qが出発してから何秒後ですか。
(2)直線PQが2回目に台形ABCDの面積を2等分するのは、2点P、Qが出発してから何秒後ですか。
投稿日:2023.03.18

<関連動画>

【受験算数】静香さんと百恵さんが50mのブールを1往復泳ぎました。2人は同時にスタートしましたが、静香さんが折り返してから百恵さんが折り返すまでに10秒間ありました。そして、静香さんがゴールしたとき…

アイキャッチ画像
単元: #算数(中学受験)#速さ#旅人算・通過算・流水算
教材: #SPX#5年算数D-支援#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
静香さんと百恵さんが50mのブールを1往復泳ぎました。
2人は同時にスタートしましたが、静香さんが折り返してから
百恵さんが折り返すまでに10秒間ありました。
そして、静香さんがゴールしたとき、百恵さんはゴールの20m手前にいました。

(1) 静香さんと百恵さんの泳ぐ速さの比を最も簡単な整数の比で求めなさい。
(2) 百恵さんの泳ぐ速さは秒速何mですか。
この動画を見る 

【小5 算数】  小5-43  台形の面積

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【公式】
台形の面積=①_________





※図は動画内参照
この動画を見る 

効率よく計算するための一歩を踏み出す問題~全国入試問題解法 #shorts #数学 #高校入試 #sound

アイキャッチ画像
単元: #計算と数の性質#いろいろな計算#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ 26\times 78\times(-5)^2 $を計算せよ.

広大付属高校過去問
この動画を見る 

-15÷4の余りは?

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$-15 \div 4$の余りは?
この動画を見る 

【高校受験対策】数学-死守32

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#平行と合同#確率#速さ#速さその他#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-2+5$を計算しなさい。

②$3 + 3 ^ 4 \div (- 9)$を計算しなさい。

③$4(2a - 3) - 2(3a - 5)$を計算しなさい。

④$\dfrac{x-y}{6}-\dfrac{x+y}{8}$を計算しなさい。

⑤$3\sqrt8 - \sqrt{50} + sqrt{18}$を計算しなさい。

⑥2次方程式$(x + 2)(x - 2) = 2(3x - 2)$を解きなさい。

⑦かずよしくんは、自宅から1800mはなれた学校に登校するため、
午前7時30分に家を出発した。
最初は毎分60mの速さで歩いていたが、遅刻しそうになったので、
途中から毎分100mの速さで走ったところ、午前7時56分に学校に着いた。
かずよしくんが走った道のりは何mか、求めなさい。

⑧赤球3個と白球3個が入っている袋がある。
この袋の中から、同時に2個の球を取り出すとき、
赤球と白球が1個ずつである確率を求めなさい。
ただし、どの球を取り出すことも、同様に確からしいものとする。

⑨左下の図1で、正六角形$ABCDEF$に、2つの平行な直線$\ell、m$が交わっており、
交点はそれぞれ$G、H、I、J$である。
$\angle GHF=78°$のとき、$\angle IJE$の大きさを求めなさい。

⑩ある中学校の1年A組25人と1年B組25人の休日の学習時間を調べた。
下の図2、 図3は、それぞれの結果をヒストグラムに表したもので、
2つの図から「1年A組は1年B組 より、$\Box$」と読みとることができた。
$\Box$にあてはまるものとして適切なものを、 下のア~エから1つ選び、記号で書きなさい。

ア→学習時間の分布の範囲が小さい
イ→最頻値を含む階級の度数が多い
ウ→中央値を含む、階級の度数が少ない
エ→学習時間が150分以上の人数が多い

図は動画内参照
この動画を見る 
PAGE TOP