微分方程式⑪-1【非線形2階微分方程式】(高専数学、数検1級) - 質問解決D.B.(データベース)

微分方程式⑪-1【非線形2階微分方程式】(高専数学、数検1級)

問題文全文(内容文):
これを解け.

(1)$\dfrac{dy}{dx^2}+\left(\dfrac{dy}{dx}\right)^2=0$
(2)$\dfrac{d^2y}{dx^2}=\sqrt{1-\left(\dfrac{dt}{dx}\right)^2}$
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$\dfrac{dy}{dx^2}+\left(\dfrac{dy}{dx}\right)^2=0$
(2)$\dfrac{d^2y}{dx^2}=\sqrt{1-\left(\dfrac{dt}{dx}\right)^2}$
投稿日:2021.01.16

<関連動画>

#8数検1級1次過去問 重積分積分順序の変更

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}$
以下を解け.

$\displaystyle \int_{0}^{3} dy \displaystyle \int_{0}^{\sqrt{\frac{y}{3}}}\ \log(x^3-3x+3)dx$
この動画を見る 

重積分⑦-6 #153-(3)【極座標による変数変換】(高専数学 微積II,数検1級対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.
$\iint_D \ \sqrt{x^2+y^2}\ dx \ dy$
$D:x^2+y^2\leqq 4,x^2+y^2\geqq 2x,x\geqq 0$
この動画を見る 

練習問題37 数検1級1次 高専数学 教採 重積分の積分順序の変更

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#その他#数学検定#数学検定1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$D:0\leqq x \leqq 2,x \leqq y \leqq 2$
$ \displaystyle \iint_D e^{y^2} dx \ dy$を計算せよ.
この動画を見る 

20年5月数学検定1級1次試験(微分)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#三角関数とグラフ#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
6⃣
x=sinθ
$y=-log tan \frac{θ}{2}-cosθ$
$θ=\frac{\pi}{3}$における$\frac{dy}{dx^2}$を求めよ。
この動画を見る 

#22 数検1級1次 過去問 無限級数

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#関数の極限#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{i=1}^\infty\ \tan^{-1}\displaystyle \frac{1}{k^2+k+1}$を求めよ。
この動画を見る 
PAGE TOP