【数学】(一気見用)高2生必見!! 2020年度 第2回 K塾高2模試(※大問4(1)(ii)の答えに訂正あり) - 質問解決D.B.(データベース)

【数学】(一気見用)高2生必見!! 2020年度 第2回 K塾高2模試(※大問4(1)(ii)の答えに訂正あり)

問題文全文(内容文):
大問1:小問集合
(1)$(a+3)^3$を展開せよ。
(2)$\dfrac{x-3}{x^2+x} +\dfrac{x+9}{x^2+3x}$を計算せよ。
(3)2次関数$y=x^2+2x (-2\leqq x\leqq 2)$における最大値をM、最小値をmとして、M-mを求めよ。
(4)iを虚数単位とする。$\dfrac{7+3i}{1+i}$をa+bi (a,bは実数の形で表せ。 )
(5)$0°\leqq\theta\lt180°、\sin\theta+\cos\theta=\dfrac{1}{2}$のとき、$\sin\theta・\cos\theta$と$\cos\theta-\sin\theta$を求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。

大問2-1:2次関数
実数xについての2つの不等式 $ax^2+2ax-2a+1\leqq 0$・・・①
$\vert x-2\vert \leqq 1$・・・② がある。
ただし、aは0でない実数の定数とする。
(1)$a=-1$のとき、①を解け。
(2)②を解け。
(3)②を満たすすべてのxが①を満たすようなaの値の範囲を求めよ。

大問2-2:図形と計量
三角形ABCにおいて、$AB=7、BC=8、CA=3$とする。
(1)$\cos\angle BAC$の値を求めよ。
(2)三角形ABCの面積を求めよ。
(3)三角形ABCの外接円において、点Aを含まない方の弧BC上に、$ \sin\angle BCP:\sin\angle CBP=1:3$となるように点Pをとる。
このとき、線分BPの長さと四角形 ABPCの面積を求めよ。

大問3:確率
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。

大問4:整数の性質
(1)x,zは0以上の整数とする。
(i)$z=0,1,2,3,4,5,6,7,8,9,10$について、$2^z$を7で割ったときの余りを順に書き 並べよ。ただし、2⁰=1とする。
(ii)x,zは等式 $7x=2^z+3$・・・① を満たしている。$0\leqq z\leqq 10$のとき、等式①を満たすx,zの組(x,z)をすべて求めよ。
(2)0以上の整数x,y,zが、等式 $(4x+3y)(x-y)=2^z$・・・② を満たしている。
(i)xが奇数、yが偶数、z=5のとき、等式②を満たすx,yの組(x,y)をすべて求めよ。
(ii)xが奇数、yが偶数、0≦z≦20のとき、等式②を満たすx,y,zの組(x,y,z)の個数 を求めよ。
(iii)z=100で、xとyは偶奇を問わないとき、等式②を満たすx,yの組(x,y)の個数 を求めよ。

大問5:式と証明、複素数と方程式
aを実数の定数とする。xの3次式 $P(x)=x^3+3x^2+3x+a$ があり、$P(-2)=0$を満たす。
(1)aの値を求めよ。
(2)方程式$P(x)=0$を解け。
(3)方程式$P(x)=0$の虚数解のうち、虚部が正であるものを$\alpha$、虚部が負であるもの を$\beta$と表す。また、方程式$P(x)=0$の実数解を$γ$と表す。さらに、$A=\alpha+1、B=\beta+1、 C=γ+1$とする。
(i)$A^2+B^2、A^3、B^3$の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。$A^n+B^n+C^n=0$を満たすnの個数を求めよ。

大問6:三角関数
$\theta$の関数 $f(\theta)=\dfrac{1}{2\sin2\theta}-\sqrt2k\cos(\theta-\dfrac{\pi}{4})+k^2$ がある。ただし、kは正の定数である。
(1)$\sin2\theta,\cos(\theta-\dfrac{\pi}{4})$のそれぞれを$\sin\theta、\cos\theta$を用いて表せ。
(2)(i)f($\theta$)を$(\sin\theta-p)(\cos\theta-q) $(p,qは定数)の形で表せ。$ (ii)k=\dfrac{\sqrt3}{2}$のとき、方程式$f(\theta)=0$を$0\leqq\theta\lt 2\pi$において解け。
(3)θの方程式$f(\theta)=0$が$0\leqq\theta\lt 2\pi$において相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、θの方程式$f(\theta)=0$の$0\leqq\theta\lt 2\pi$における最小の解を$\alpha$、最大の解を$\beta$と する。$\alpha+\beta=\dfrac{5\pi}{3}$となるようなkの値を求めよ。

大問7:ベクトル
三角形OABがあり、$OA=2,OB=1,\angle AOB=120°$である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。また$OB=a,OB=b$とする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)$OH=kOD$(kは実数)と表される点Hがある。$CT⊥OD$となるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを$\angle AOD=\angle POD$となるようにとる。OPをa,bを用いて表せ。
チャプター:

0:00 オープニング
0:05 大問1:小問集合
8:34 大問2-1:2次関数
13:13 大問2-2:図形と計量
18:15 大問3:確率
25:04 大問4:整数の性質
34:30 大問5:式と証明、複素数と方程式
42:13 大問6:三角関数
49:17 大問7:ベクトル

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)$(a+3)^3$を展開せよ。
(2)$\dfrac{x-3}{x^2+x} +\dfrac{x+9}{x^2+3x}$を計算せよ。
(3)2次関数$y=x^2+2x (-2\leqq x\leqq 2)$における最大値をM、最小値をmとして、M-mを求めよ。
(4)iを虚数単位とする。$\dfrac{7+3i}{1+i}$をa+bi (a,bは実数の形で表せ。 )
(5)$0°\leqq\theta\lt180°、\sin\theta+\cos\theta=\dfrac{1}{2}$のとき、$\sin\theta・\cos\theta$と$\cos\theta-\sin\theta$を求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。

大問2-1:2次関数
実数xについての2つの不等式 $ax^2+2ax-2a+1\leqq 0$・・・①
$\vert x-2\vert \leqq 1$・・・② がある。
ただし、aは0でない実数の定数とする。
(1)$a=-1$のとき、①を解け。
(2)②を解け。
(3)②を満たすすべてのxが①を満たすようなaの値の範囲を求めよ。

大問2-2:図形と計量
三角形ABCにおいて、$AB=7、BC=8、CA=3$とする。
(1)$\cos\angle BAC$の値を求めよ。
(2)三角形ABCの面積を求めよ。
(3)三角形ABCの外接円において、点Aを含まない方の弧BC上に、$ \sin\angle BCP:\sin\angle CBP=1:3$となるように点Pをとる。
このとき、線分BPの長さと四角形 ABPCの面積を求めよ。

大問3:確率
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。

大問4:整数の性質
(1)x,zは0以上の整数とする。
(i)$z=0,1,2,3,4,5,6,7,8,9,10$について、$2^z$を7で割ったときの余りを順に書き 並べよ。ただし、2⁰=1とする。
(ii)x,zは等式 $7x=2^z+3$・・・① を満たしている。$0\leqq z\leqq 10$のとき、等式①を満たすx,zの組(x,z)をすべて求めよ。
(2)0以上の整数x,y,zが、等式 $(4x+3y)(x-y)=2^z$・・・② を満たしている。
(i)xが奇数、yが偶数、z=5のとき、等式②を満たすx,yの組(x,y)をすべて求めよ。
(ii)xが奇数、yが偶数、0≦z≦20のとき、等式②を満たすx,y,zの組(x,y,z)の個数 を求めよ。
(iii)z=100で、xとyは偶奇を問わないとき、等式②を満たすx,yの組(x,y)の個数 を求めよ。

大問5:式と証明、複素数と方程式
aを実数の定数とする。xの3次式 $P(x)=x^3+3x^2+3x+a$ があり、$P(-2)=0$を満たす。
(1)aの値を求めよ。
(2)方程式$P(x)=0$を解け。
(3)方程式$P(x)=0$の虚数解のうち、虚部が正であるものを$\alpha$、虚部が負であるもの を$\beta$と表す。また、方程式$P(x)=0$の実数解を$γ$と表す。さらに、$A=\alpha+1、B=\beta+1、 C=γ+1$とする。
(i)$A^2+B^2、A^3、B^3$の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。$A^n+B^n+C^n=0$を満たすnの個数を求めよ。

大問6:三角関数
$\theta$の関数 $f(\theta)=\dfrac{1}{2\sin2\theta}-\sqrt2k\cos(\theta-\dfrac{\pi}{4})+k^2$ がある。ただし、kは正の定数である。
(1)$\sin2\theta,\cos(\theta-\dfrac{\pi}{4})$のそれぞれを$\sin\theta、\cos\theta$を用いて表せ。
(2)(i)f($\theta$)を$(\sin\theta-p)(\cos\theta-q) $(p,qは定数)の形で表せ。$ (ii)k=\dfrac{\sqrt3}{2}$のとき、方程式$f(\theta)=0$を$0\leqq\theta\lt 2\pi$において解け。
(3)θの方程式$f(\theta)=0$が$0\leqq\theta\lt 2\pi$において相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、θの方程式$f(\theta)=0$の$0\leqq\theta\lt 2\pi$における最小の解を$\alpha$、最大の解を$\beta$と する。$\alpha+\beta=\dfrac{5\pi}{3}$となるようなkの値を求めよ。

大問7:ベクトル
三角形OABがあり、$OA=2,OB=1,\angle AOB=120°$である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。また$OB=a,OB=b$とする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)$OH=kOD$(kは実数)と表される点Hがある。$CT⊥OD$となるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを$\angle AOD=\angle POD$となるようにとる。OPをa,bを用いて表せ。
備考:■訂正
大問4(1)(ii)の答え
誤:(x,z)=(1,2)(5,5)(8,37)
正:(x,z)=(1,2)(5,5)(37,8)
投稿日:2021.08.13

<関連動画>

【数学】(一気見用)高2生必見!! 2020年度 第2回 K塾高2模試

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)(a+3)³を展開せよ。
(2)(x-3)/(x²+x) + (x+9)/(x²+3x)を計算せよ。
(3)2次関数y=x²+2x (-2≦x≦2)における最大値をM、最小値をmとして、M-mを求めよ。
(4)iを虚数単位とする。(7+3i)/(1+i)をa+bi (a,bは実数の形で表せ。 )
(5)0°≦θ<180°、sinθ+cosθ=1/2のとき、sinθ・cosθとcosθ-sinθを求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。

大問2-1:2次関数
実数xについての2つの不等式 ax²+2ax-2a+1≦0・・・①
│x-2│≦1・・・② がある。
ただし、aは0でない実数の定数とする。
(1)a=-1のとき、①を解け。
(2)②を解け。
(3)②を満たすすべてのxが①を満たすようなaの値の範囲を求めよ。

大問2-2:図形と計量
三角形ABCにおいて、AB=7、BC=8、CA=3とする。
(1)cos∠BACの値を求めよ。
(2)三角形ABCの面積を求めよ。
(3)三角形ABCの外接円において、点Aを含まない方の弧BC上に、 sin∠BCP:sin∠CBP=1:3となるように点Pをとる。
このとき、線分BPの長さと四角形 ABPCの面積を求めよ。

大問3:確率
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。

大問4:整数の性質
(1)x,zは0以上の整数とする。
(i)z=0,1,2,3,4,5,6,7,8,9,10について、2^zを7で割ったときの余りを順に書き 並べよ。ただし、2⁰=1とする。
(ii)x,zは等式 7x=2^z+3・・・① を満たしている。0≦z≦10のとき、等式①を満たすx,zの組(x,z)をすべて求めよ。
(2)0以上の整数x,y,zが、等式 (4x+3y)(x-y)=2^z・・・② を満たしている。
(i)xが奇数、yが偶数、z=5のとき、等式②を満たすx,yの組(x,y)をすべて求めよ。
(ii)xが奇数、yが偶数、0≦z≦20のとき、等式②を満たすx,y,zの組(x,y,z)の個数 を求めよ。
(iii)z=100で、xとyは偶奇を問わないとき、等式②を満たすx,yの組(x,y)の個数 を求めよ。

大問5:式と証明、複素数と方程式
aを実数の定数とする。xの3次式 P(x)=x³+3x²+3x+a があり、P(-2)=0を満たす。
(1)aの値を求めよ。
(2)方程式P(x)=0を解け。
(3)方程式P(x)=0の虚数解のうち、虚部が正であるものをα、虚部が負であるもの をβと表す。また、方程式P(x)=0の実数解をγと表す。さらに、A=α+1、B=β+1、 C=γ+1とする。
(i)A²+B²、A³、B³の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。A^n+B^n+C^n=0を満たすnの個数を求めよ。

大問6:三角関数
θの関数 f(θ)=1/2sin2θ-√2kcos(θ-π/4)+k² がある。ただし、kは正の定数である。
(1)sin2θ,cos(θ-π/4)のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)f(θ)を(sinθ-p)(cosθ-q) (p,qは定数)の形で表せ。 (ii)k=√3/2のとき、方程式f(θ)=0を0≦θ<2πにおいて解け。
(3)θの方程式f(θ)=0が0≦θ<2πにおいて相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、θの方程式f(θ)=0の0≦θ<2πにおける最小の解をα、最大の解をβと する。α+β=5π/3となるようなkの値を求めよ。

大問7:ベクトル
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
この動画を見る 

【数学】2023年度 第2回 K塾高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1問:小問集合
(1)$(3x-1)(9x^2+3x+1)$を展開せよ。
(2)$\displaystyle \frac{x-1}{1+\frac{1}{x+2}}$を簡単にせよ。
(3)2次関数$y=2x^2-x+1$の最小値を求めよ。
(4)iを虚数単位とする。$\displaystyle \frac{(2+i)^2}{i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=4,BC=\sqrt{7},CA=\sqrt{3}$である△ABCにおいて、cos∠BACの値と△ABCの面積を求めよ。
(6)a,a,b,b,c,cの6文字を1列に並べるとき、並べ方は全部で何通りか。このうち、a,aが隣り合わないような並べ方は何通りか。

第2問-i:2次不等式
aは正の定数とする。実数xについての2つの不等式 $ax^2+(2a-5)x-2a+1<0$・・・①、$│2x-3│≦3$・・・②がある。
(1)a=2のとき、①を解け。
(2)②を解け。
(3)②を満たすすべての実数xに対して、①が成り立つようなaの値の範囲を求めよ。

第2問-ii:図形と方程式
xy平面上に、2つの円$C₁:x^2+y^2-10x-a^2-4a+21=0、C2:x^2+y^2=5$がある。また、C₂上の点P(2,1)におけるC₂の 接線を$l$とする。ただし、aはa>-2を満たす定数とする。
(1)a=1のとき、C₁の中心の座標と半径を求めよ。
(2)$l$の方程式を求めよ。
(3)C₁と$l$が接するようなaの値を求めよ。また、このとき のC1と$l$の接点をQとするとき、線分PQの長さを求めよ。

第3問:複素数と方程式
a,bを実数の定数とする。xの3次式$ f(x)=x^3+(a+3)x^2+(3a+b)x+3b$ と、3次方程式 $f(x)=0$・・・(*)がある。
(1)f(-3)を求めよ。
(2)a=-1かつb=1のとき、(*)を解け。
(3)(*)が異なる2つの虚数解をもつためのa,bの条件を求めよ。
(4)a,bが(3)で求めた条件を満たすとし、(*)の異なる2つの虚数解をα,βとする。このとき、$α^2,β^2$がともに(*)の解となるようなa,bの値の組(a,b)をすべて求めよ。

第4問:確率
5枚のカード1,1,2,2,3が入った袋が1つあり、次の操作(I)を考える。
操作(I): 袋から2枚のカードを同時に取り出し、取り出した2枚のカードに書かれた数の和をXとし、取り出した2枚のカードを袋に戻す。
(1)操作(I)を1回行う。
(i)X=2となる確率を求めよ。
(ii)X=4となる確率を求めよ。
さらに、1枚の硬貨を用意し、操作(I)で定まるXの値に対して、次の操作(II)を考える。
操作(II):1枚の硬貨を投げ、表が出たらY=X+1とし、裏が出たらY=Xとする。
操作(I), (II)を(I), (II)の順に1回ずつ行うことを操作Tとする。
(2)操作Tを1回行う。
(i)Y=4となる確率を求めよ。
(ii)Yの期待値を求めよ。
(3)操作Tを3回繰り返すとき、3回のYの値の合計が15になる確率を求めよ。

第5問:三角関数
aを実数の定数とする。θの方程式$cos2θ+2(5a-1)sinθ-12a^2+6a-1=0$・・・(*)がある
(1)cos2θをsinθを用いて表せ。
(2)a=0とする。0≦θ<2πにおいて、(*)を解け。
(3)0≦θ<2πにおいて、(*)が異なる4個の解をもつとする。
(i)aのとり得る値の範囲を求めよ。
(ii)0≦θ<2πにおける(*)の4個の解を、小さい順にθ₁,θ₂,θ₃,θ₄とする。(θ₂-θ₁)+(θ₄-θ₃)=πとなるようなaの値を求めよ。

第6問:数列
nは自然数。等差数列{a_n}があり、a₁+a₂=8,a₄+a₅=20である。また、公比が実数である等比数列{b_n}があり、
b₁+b₂=4, b₄+b₅=108である。
(1)数列{a_n}の一般項を求めよ。また、数列{a_n}の初項から第n項までの和S_nを求めよ。
(2)数列{b_n}の一般項を求めよ。
(3)数列{c_n}は、左から順に次のような項が並べられた数列である。 b₁がa₁個、b₂がa₂個、b₃がa₃個、...、b_nがa_n個、... すなわち、{c}: b₁,...,b₁, b₂,...,b₂, b₃,..,b₃,...,b_n,...,b_n,...
(i)C₂₀₂₃の値を求めよ。ただし、結果は2¹⁰⁰のように指数表示のままでよい。
(ii)$\displaystyle \sum_{k=1}^{2023}c_k$の値を求めよ。ただし、結果は$2^{100}$のように指数表示のままでよい。
この動画を見る 

【数A】場合の数:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
白玉6個、赤玉2個、青玉2個の計10個の玉を横一列に並べる。ただし、同じ色の玉は区別しない。
(1)並べ方は全部で何通りあるか。
(2)白赤白赤白と連続して並ぶ箇所があるような並べ方は何通りあるか。
(3)次の、赤玉についての条件A、青玉についての条件Bを考える。
A:「同じ色の玉が両隣にある」
B:「異なる色の玉が 両隣にある」
ただし、列の両端の玉は、AもBも満たさないものとする。例えば、 白赤白白白青赤青白白は、2個の赤玉はともにAを満たし、2個の青玉もともにBを 満たす。また、白赤赤白白青青白白白は、2個の青玉はともにBを満たすが、2個 の赤玉はともにAを満たさない。
(i)2個の赤玉がともにAを満たすような並べ方は 何通りあるか。
(ii)2個の赤玉がともにAを満たし、かつ、2個の青玉がともにBを満たすような並べ方は何通りあるか。
この動画を見る 

【数Ⅱ】高2生必見!! 2019年8月 第2回 K塾高2模試 大問3_式と 証明・複素数と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bを実数定数とする。xの方程式 $x^3+(1-a)x^2+3x+b=0$・・・(*) は$x=-1$を解にもつ。
(1)bをaを用いて表せ。
(2)$a=1$のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解を$\alpha,\beta$とする。 $f(x)=x^2+cx+d$ (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) $f(α)=\dfrac{1}{\beta} f(\beta)=\dfrac{1}{\alpha} f(-1)=-1$
この動画を見る 

【数学】2020年度 第4回 K塾記述高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1(小問集合)
(1)12/(3-√5)の整数部分をa、小数部分をbとする。(i)aの値を求めよ。(ii)b²+10bの値を求めよ。
(2)aを実数の定数とする。関数f(x)=2x²-6x+aの0≦x≦1における最小値が3となるようなaの値を求めよ。
(3)三角形ABCにおいて、AB=3、BC=4、CA=2である。cos∠BACの値と三角形ABCの外接円の半径を求めよ。
(4)方程式x³-x²-x-2=0を解け。
(5)円x²+y²=4上の点(1, √3)における接線の方程式を求めよ。
(6)方程式4^x-5・2-(x+1)+24=0を解け。
大問2(三角関数)
三角形OABにおいて、OA=√3-1、OB=√2、∠AOB=3π/4が成り立っている。辺AB上(両端を含まない)に点Cをとり、直線OC上に点Dを、3点O、C、Dがこの順に並び、OD=2となるようにとる。∠AOD=θ(0<θ<3π/4)とおくとき、次の問に答えよ。
(1)三角形OADの面積をθを用いて表せ。
(2)三角形OBDの面積をsinθ、cosθを用いて表せ。
(3)Cが辺AB上を動くとき、四角形OADBの面積の最大値、および、最大値を与えるθの値を求めよ。
大問3(場合の数)
0から7までの数字が1つずつ書かれたカードが1枚ずつ、合計8枚のカードがある。この8枚のカードから3枚を選んで左から1列に並べ、2桁、もしくは3桁の整数Nを作る。例えば、012と並べたときは2桁の数で、N=12とし、123と並べたときは3桁の数で、N=123とする。
(1)2桁のN、3桁のNはそれぞれ何通りできるか。
(2)2桁のNのうち、十の位の数と一の位の数の和が7とならないものは何通りできるか。
(3)百の位が7のとき、どの2つの位の数の和も7とならないものは何通りできるか。
(4)3桁のNのうち、どの2つの位の数の和も7とならないものは何通りできるか。
大問4(微分法)
【問題文】
a、bを実数の定数とする。関数f(x)=x³+ax²+bx+a²はx=-1で極大値14をとるとする。
(1)a、bの値を求めよ。
(2)y=f(x)のグラフとx軸は異なる3点で交わり、そのx座標を小さい方から順にα、β、γとする。
(i)α>-3を示せ。
(ii)P(3,0)、B(β,0)、C(γ,0)とする。線分PBとPCの長さの大小を比較せよ。
大問5(数列)
【問題文】
2つの数列{a[n]}{b[n]}がa[1]=3/2、a[n+1]=3/2a[n]-1/2 (n=1,2,3,...) b[1]=p、b[n+1]=b[n]+p-1/2(3/2)^(n-1) (n=1,2,3,...) を満たしている。ただし、pは整数とする。
(1)a[n]をnの式で表せ。
(2)b[n]をpとnの式で表せ。
(3)c[n]=b[n]-a[n]とする。c[n]がn=4で最大となるようなpの値を求めよ。
この動画を見る 
PAGE TOP