とある男が授業をしてみた - 質問解決D.B.(データベース) - Page 10

とある男が授業をしてみた

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

担当科目:数学、理科、社会、英語、国語

東京学芸大学卒業。
教員免許を持ちながら、営業マン、塾講師を経て、2012年にYouTubeチャンネル「とある男が授業をしてみた」を開設。
経済的に塾に通えない子どもたちに向けて授業動画を配信。「情熱大陸」や「サタデーステーション」などメディアにも多数出演。
定規まで用いて徹底的に準備された丁寧な板書とわかりやすい説明で、現在ではチャンネル登録者数200万人を超える。

【数Ⅲ-139】部分積分①

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(部分積分①)

Q.次の不定積分を求めよ

①$\int xcosxdx$

➁$\int (x+3)cos2xdx$

③$\int x^2 sinxdx$
この動画を見る 

【数Ⅲ-138】置換積分③

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(置換積分③)

Q.次の不定積分を求めよ

①$\int (2x+1)(x^2+x-3)^3dx$

➁$\int \frac{2x}{\sqrt{x^2-4}}dx$

③$\int \frac{tanx}{cosx}dx$
この動画を見る 

【数Ⅲ-137】置換積分②

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
Q,次の不定積分を求めよ

①$\int x\sqrt{x+1}dx$

➁$\int(2x-1)(x+1)^3dx$

③$\int \frac{x}{\sqrt{2x+1}}dx$
この動画を見る 

【数Ⅲ-136】置換積分①

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(置換積分①)

Q.次の不定積分を求めよ

①$\int(4x-1)^3dx$

➁$\int sin(2θ +\frac{\pi}{3})dθ$

③$\int^3 \sqrt{2-x}dx$

④$\int \frac{1}{1-3x}dx$

⑤$\int \frac{2x}{x^2+1}dx$

⑥$\int \frac{1}{tanx}dx$
この動画を見る 

【数Ⅲ-135】不定積分③(指数関数編)

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(不定積分③・指数関数編)

③$\int (4e^x+3)dx$

④$\int (5^x-2^x)dx$

⑤$\int e^{3x}dx$
この動画を見る 

【数Ⅲ-134】不定積分②(三角関数編)

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(不定積分➁・三角関数編)

⑤$\int (4sin x-3cos x)dx$

⑥$\int \frac{cos^3x+5}{cos^2x}dx$

⑦$\int \frac{1}{tan^2x}dx$
この動画を見る 

【数Ⅲ-133】不定積分①(準備運動編)

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(不定積分①・準備運動編)

Q.次の不定積分を求めよ

①$\int 5x^2dx$

➁$\int (8x^3+x^2-6x+5)dx$

③$\int (\frac{1}{x^3}-\sqrt{x})dx$

④$\int (\frac{6x^4-3}{x^2})dx$

⑤$\int \frac{(x-1)^2}{x^3}dx$

⑥$\int (\frac{x-2}{x})^2dx$
この動画を見る 

【数Ⅲ-132】近似式

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(近似式)
$x≒0$のとき、次の関数について1次の近似式を求めよ。

①$\sqrt{1+3x}$

➁$\log (e+x)$

③$sin31°$の近似値を、1次の近似式を用いて少数第3位まで求めよ。
ただし$\sqrt{3}=1.73,\pi=3.14$とする。
この動画を見る 

【数Ⅲ-131】いろいろな量の変化率

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(いろいろな量の変化率)

①毎秒$3cm^2$の割合で表面積が増加している球がある。
この球の半径が$4cm$になった瞬間における体積の変化率を求めよ。

②右の図のような直円錐の容器に、毎秒$3cm^3$の割合で水を注ぐ。
水面の高さが$6cm$になったときの水面の上昇する速度を求めよ。
この動画を見る 

【数Ⅲ-130】速度と加速度③(円運動編)

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と加速度③・円運動編)

$o$が原点の座標平面上の動点$P$の時刻$t$における位置が$x=3\cos2t$、$y=3\sin2t$で表されるとき、次の問いに答えよ。

①速度$\vec{v},$加速度$\vec{a}$を求めよ。

②$\overrightarrow{OP} \perp \vec{v},\vec{v}\perp \vec{a}$を示せ。
この動画を見る 

【数Ⅲ-129】速度と加速度②(平面上の点の運動編)

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と加速度➁・平面上の点の運動編)

①座標平面上を運動する点$P(x,y)$の時刻$t$における座標が$x=e^t\cos t$、$y=e^t\sin t$であるとき、
点$P$の時刻$t$における速さ$\vec{v}$と加速度$\vec{a}$の大きさをそれぞれ求めよ
この動画を見る 

【数Ⅲ-128】速度と加速度①(直線上の点の運動編)

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と加速度①・直線上の運動編)

地上から真上に投げ上げた物体の時刻$t$における高さが$h(t)=40t-5t^2$で表されるとき、次の問いに答えよ。

①速度$v(t)$、加速度$a(t)$を求めよ。

②最高到達点の高さを求めよ。

③地上に落下するときの速度を求めよ。
この動画を見る 

【数Ⅲ-127】微分の方程式への応用

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の方程式への応用)

$a$を定数とするとき、次の$x$についての方程式の異なる実数解の個数を調べよ。

①$e^x=x+a$

②$2x^3-ax^2+1$
この動画を見る 

【数Ⅲ-126】微分の不等式への応用②

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の不等式への応用➁)

$x\gt0$のとき、不等式$\sqrt{1+x}\gt1+\frac{1}{2}x-\frac{1}{8}x^2$を証明せよ
この動画を見る 

【数Ⅲ-125】微分の不等式への応用①

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の不等式への応用①)

①$x\gt1$のとき、不等式$2\sqrt{x}\gt\log x$を証明せよ

➁$x\gt1$のとき、不等式$\log x\leqq\frac{x}{e}$を証明せよ
この動画を見る 

リクエスト頂いた規則性やっていきましょう【中学受験】

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#規則性(周期算・方陣算・数列・日暦算・N進法)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
図のようにある規則にしたがって、整数0.1.2.3.4.5.6...を順に並べます。


0を囲む1から8の8個の数を1周目の数とします。
1周目を囲む9から24までの数を2周目の数とします。
このように囲むとき、5周目の数の和はいくらですか。


0の位置から右に2、上に3の位置にある数は29です。
0の位置から左に5、下に4の位置にある数は何ですか。

この動画を見る 

中学入試の問題をやってみます【お試し】

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$12×(\frac{1}{2}-\frac{1}{3})-(\frac{1}{2}\div 0.75-\frac{4}{9})×9$

②$93-89+83-71+59-53+50-47+41-29+17-11+7$

③$(954-459-25×16+0.4)\div(\frac{1}{12}+\frac{1}{84}+\frac{1}{210}) $

④$(0.375×24+2.5×0.625×16)×19-25×12-125×16-1.4×190$

⑤$1×1×1+3+5+3×3×3+13+15+17+19+5×5×5+31+33+35+37+39+41$
この動画を見る 

【理科】中2-1 炭酸水素ナトリウムを熱する実験 (撮り直ししました)

アイキャッチ画像
単元: #理科(中学生)#化学
指導講師: とある男が授業をしてみた
問題文全文(内容文):
理科(炭酸水素ナトリウムを熱する実験)

ポイント
炭酸水素ナトリウム→①(個体)+➁(液体)+③(気体)
このように1種類の物質が2種類以上の別の物質にわかれる変化を④という


<実験するときの3つの注意点〉
【1】⑤ために試験管の口を底より少し下げておく。

【2】⑥ために火を消す前に⑦から出しておく。

【3】最初は⑧ので1本目は使わない。
集めた気体の試験管に火のついた線香をいれると⑨、石灰水を入れてふると➉。
出てきた液体に⑪紙をつけると⑫色になる。
炭酸水素ナトリウムと熱した後の物質に⑬溶液を反応させると、それぞれ⑭色、⑮色になる。

この動画を見る 

【高校受験対策】数学-死守36

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守36

①$5+4 \times 6$を計算せよ

②$\frac{9}{5}\div 0.8-\frac{1}{2}$を計算せよ

③$\sqrt{60}\div \sqrt{5}+\sqrt{27}$を計算せよ

④比例式$3:4=(x-6):8$について$x$の値を求めよ。

⑤$3x^2+9x-12$を因数分解せよ。

⑥$n$を50以下の正の整数とするとき、$\sqrt{5n}$の値が整数となるような$n$の値をすべて求めよ。

⑦次の口と△にどんな自然数を入れても、計算の結果がつねに自然数 になるものはどれか。
下のア~エの中からあてはまるものをすべて答えよ。

ア 口+△
イ 口-△
ウ 口×△
エ 口÷△

⑧大小2つのさいころを同時に投げる。
大きいさいころの出た目の数を$x$座標、小さいさいころの出た目の数を$y$座標とする点を$P(x,y)$とするとき、点$P$が1次関数$y=-x+8$のグラフ上の点となる確率を求めよ。

⑨右の図は半径$rcm$の球を切断して できた半球で、切断面の円周の長さは$4\pi cm$であった。
このとき$r$の値を求めよ。
また、この半球の体積は何$cm^3$か。 ただし$\pi$は円周率とする。
この動画を見る 

【高校受験対策】英語/2時間目

アイキャッチ画像
単元: #中3英語#不定詞(疑問詞+to,It~for to,ask(tell,want)O to,too~to,enough~to,not to)#分詞(現在分詞の形容詞的用法、過去分詞の形容詞的用法)
指導講師: とある男が授業をしてみた
問題文全文(内容文):

A: Can you (to. think. good. of something) bring to the party?
B: How about bringing pizza?


A: Will you carry this desk to the next room with me?
B: OK, but it (big. to. may, too, go. be) through the door.


I want ( ) to enjoy Japanese food.

1→ many people visit Japan
2→ Japan visiting many people
3→ many people visiting Japan
4→ many visiting Japan people
この動画を見る 

【高校受験対策】数学-図形25

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1辺の長さが$4cm$の正方形$ABCD$がある。同1・間2に答えなさい。

問1
右の図のように、点$P$が$A$を出発し、正方形$ABCD$の周上を、 毎秒$1cm$の速さで$B$、$C$を通って$D$まで移動する。
(1)(2)に 答えなさい。

(1)点$P$が$A$を出発してから6秒後の線分$AP$の長さを求めなさい。

(2) 点$P$が$CD$上にあり、四角形$ABCP$の面積が$10cm^2$となるのは、点$P$が$A$を出発してから何秒後か、求めなさい。


問2
下の図のように、正方形$ABCD$の外側に、正三角形$ABE$と$\angle CBF=90°$の直角三角形$BCF$をつくる。
辺$CF$の中点を$M$とし、$BF=4\sqrt{3}cm$であるとき、(1)・(2)に答えなさい。

(1)$△BDE$の面積を求めなさい
(2)線分$BM$と線分$DF$の交点を$Q$とするとき、$BQ:QM$を求めなさい。
この動画を見る 

【高校受験対策】数学-関数41

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、関数$y=\frac{1}{2}x^2$のグラフ上に2点$A$・$B$があり、点$A$の$x$座標は$-3$、点$B$は点$A$と$y$軸について対称である。
このとき次の問いに答えなさい。

問1
関数$y=\frac{1}{2}x^2$について、$x$の変域が$-3 \leqq x \leqq 4$のときの$y$の変域を求めなさい。

問2
$y$軸上に点$C$を、四角形$OBCA$がひし形となるようにとる。
このとき次の問いに答えなさい。

(1) 直線$AC$の式を求めなさい。

(2) 線分$AC$上に点$D$をとる。$△ODA$と四角形$OBCA$の面積比が$1:4$となるとき、点$D$の座標を求 めなさい。
この動画を見る 

【高校受験対策】数学-文章題6

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2つの自然数$a$、$b$に対して、$a$を$b$で割ったときの商を$[a☆b]$、余りを$[a◎b]$で表すこととする。
ただし、商は0以上の整数とする。
例えば、20を3で割ると商が6、余りが2であるから、$[20☆3]=6$、$[20◎3]=2$となる。
また、 3を5で割ると商が0、余りが3であるから、$[3☆5]=0$、$[3◎5]=3$となる。
このとき次の間1~間4に答えなさい。

問1 次の(ア)、(イ)に入る数をそれぞれ書きなさい。
$[37☆7]=$(ア)、$[37◎7]=$(イ)

問2 $[a☆7]=7$を成り立たせる自然数は全部で何個あるか、求めなさい。

問3 $[a☆14]=3$・・①、$[a◎7]=3$・・➁とするとき、①、②をともに成り立たせる自然数$a$をすべて求めなさい。

問4 $[a◎3]=1$・・①、$[a◎4]=3$・・➁とするとき、①、②をともに成り立たせる自然数$a$のうち、2桁の自然数は全部で何個あるか求めなさい。
この動画を見る 

【高校受験対策】数学-関数40

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
下の図のように、関数$y=\frac{1}{3}x^2$のグラフ上に2点$A$、$B$がある。
点Aの$x$座標は$-6$、点$B$の$x$座標は$3$であり、2点$A$、$B$を通る直線と$x$軸との交点を$C$とする。
このとき、次の間1~問6に答えなさい。

問1 点$B$の$y$座標を求めなさい。

問2 関数$y=\frac{1}{3}x^2$について、 $x$の変域が$-6 \leqq x \leqq 3$のときの$y$の変域を求めなさい。

問3 2点$A$、$B$を通る直線の式を求めなさい。

問4 点$C$の座標を求めなさい。

問5 $△OAB$の面積を求めなさい。

問6 $y=\frac{1}{3}x^2$のグラフ上に点$P$にある。$△POC$の面積が$△OAB$の面積と等しくなるような点$P$の$x$座標をすべて求めなさい。
この動画を見る 

【高校受験対策】数学-規則性6

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
図1のような、縦$acm$、横$bcm$の長方形の紙がある。
この長方形の紙に対して次のような【操作】を行う。ただし$a$、$b$は正の整数であり、$a \lt b$とする。

【操作】
長方形の紙から短い方の辺を1辺とする正方形を切り取る。
残った四角形が正方形でない場合には、その四角形からさらに同様の方法で正方形を切り取り、残った四角形が正方形になるまで繰り返す。

例えば、図2のように、$a$=3、$ b$=4の長方形の紙に対して【操作】を行うと、1辺3cmの正方形の紙が1枚、1辺1cmの正方形の紙が3枚、全部で4枚の正方形ができる。
このとき次の問1、間2、間3、間4に答えなさい。


問1
$a$=4、$b$=6の長方形の紙に対して【操作】を行ったとき、できた正方形のうち最も小さい正方形の 1辺の長さを求めなさい。

問2
$n$を正の整数とする。$a=n$、$b=3n+1$の長方形の紙に対して【操作】を行ったとき、正方形は全部で何枚できるか。$n$を用いて表しなさい。

問3
ある長方形の紙に対して【操作】を行ったところ、3種類の大きさの異なる正方形が全部で4枚できた。
これらの正方形は、1辺の長さが長い順に、12cmの正方形が1枚、$x$cmの正方形が1枚、$y$cmの正方形が2枚であった。
このとき、$x$、$y$の連立方程式をつくり、$x$、$y$の値を求めなさい。ただし、 途中の計算も書くこと。

問4
$b=56$の長方形の紙に対して【操作】を行ったところ、3種類の大きさの異なる正方形が全で5枚できた。このとき考えられる$a$の値をすべて求めなさい。
この動画を見る 

【高校受験対策】数学-関数39

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
和夫さんは、本を返却するために家から1800m離れた図書館へ行った。和夫さんは午後4時に家を出発し、毎分180mの速さで5分間走った後、毎分90mの速さで10分間歩いて、図書館に到着した。
その後、本を返却してしばらくたってから図書館を出発し、家へ毎分100mの速さで歩いて帰ったところ、午後4時45分に到着した。

次の図は、午後4時$x$分における家からの道のりを$y$mとして、$x$と$y$の関係をグラフに表したものである。
次の間1~間4に答えなさい。

問1
和夫さんは午後4時3分に郵便局の前を通った。家から郵便局の前までの道のりを求めなさい。

問2
和夫さんが図書館へ行く途中で、歩き始めてから図書館に着くまでの$x$と$y$の関係を式で表しなさ い。ただし、$x$の変域を求める必要はありません。

間3
和夫さんが図書館にいた時間は何分間か、求めなさい。

問4
妹の美紀さんは、午後4時18分に家を出発し、和夫さんと同じ道を通り、図書館へ一定の速さで向かったところ、午後4時33分に和夫さんと出会った。美紀さんが図書館へ向かったときの速さは毎分何mか求めなさい。
この動画を見る 

【高校受験対策】数学-図形24

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#空間図形#三平方の定理
指導講師: とある男が授業をしてみた
問題文全文(内容文):
問2
右の図の正四面体は、1辺の長さが8cmである。辺$BC$、$CD$の中点をそれぞれ点$P$、Q、 点$Q$から$AP$にひいた垂線と$AP$との交点を$R$とする。次の(1)~(4)に答えなさい。

(1) $AQ$の長さを求めなさい。

(2) $△APQ$の面積を求めなさい。

(3) $QR$の長さを求めなさい。

(4) 三角すい$RBCD$の体積は、正四面体$ABCD$の体積の何倍か、求めなさい
この動画を見る 

【高校受験対策】数学-文章題5

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・文章題5


右の記事は、ある中学校の保健委員会が発行した「保健だより」の一部である。
品数が「3品以上」と答えた生徒が、1、2年生あわせて149人であったとき、 朝食を「食べた」と答えた1年生、2年生はそれぞれ何人であったか、方程式をつくって求めなさい。なお途中の計算も書くこと。


A市の家庭における1か月あたりの水道料金は、 (水道料金)=(基本料金)+(水の使用量に応じた使用料金)となっています。
使用量が$30m^3$までは、$1m^3$あたりの使用料金が一定であり、使用量が$30m^3$を超えた分の$1m^3$があたりの使用料金は、 使用量が30$m^3$までの$1m^3$あたりの使用料金より80円高くなっています。
A市のある家庭における1ヶ月の水道料金は、使用量が$32m^3$のときは5310円、使用量が$28m^3$のときは4710円でした。 使用量が$30m^3$までの$1m^3$あたりの使用料金を求めなさい。
この動画を見る 

【高校受験対策】数学-図形23

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#平行と合同#相似な図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形23

右の図において、$△ABC$は$AB=AC$の二等辺三角形であり、 点$D$、$E$はそれぞれ辺$AB$、$AC$の中点である。
また、点$F$は直線DE上の点であり、$EF=DE$である。 このとき次の問1、問2に答えなさい。

問1
$AF=BE$であることを証明しなさい。

問2
線分$BF$と線分$CE$との交点を$G$とする。
$△AEF$において辺AFを底辺とするときの高さを$x$、$△BGE$において辺$BE$を底辺とするときの高さを$y$とするとき、$x:y$を求めなさい。
この動画を見る 

【高校受験対策】英語/1時限目

アイキャッチ画像
単元: #英語(中学生)#中2英語#中3英語#不定詞(名詞的用法・形容詞的用法・副詞的用法)#比較(比較級、最上級、more,mostを使った比較、as~asの文、不規則変化するもの、疑問詞で始まる比較の文)#関係代名詞(主格、目的格、所有格、thatの用法、前置詞+関係代名詞)
指導講師: とある男が授業をしてみた
問題文全文(内容文):

A: What season do you like?
B: I like summer. I love swimming in the sea. How about you?
A: I like spring the ( ① ) of all seasons. The flowers are beautiful.
B: I see.

ア much
イ more
ウ better
エ best


A: What will you do tomorrow?
B: I will go to the [borrow, books, to, some, library ]


A: I think the writer is smart.
B: Why do you think so?
A: Because the book [is, she, last year, which, wrote] very popular with people of all ages.
この動画を見る 
PAGE TOP