【中学数学】図形を折る問題の基礎~長野県2022年度公立高校入試~【高校受験】 - 質問解決D.B.(データベース)

【中学数学】図形を折る問題の基礎~長野県2022年度公立高校入試~【高校受験】

問題文全文(内容文):
1辺の長さが6cmの正三角形ABCがある。
図は正三角形ABCを頂点Aが頂点Cに重なるように折り曲げたとき、折り目の線分をBDとしたものである。
このとき、BDの長さを求めよ。

※図は動画内参照
単元: #数学(中学生)#中1数学#平面図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1辺の長さが6cmの正三角形ABCがある。
図は正三角形ABCを頂点Aが頂点Cに重なるように折り曲げたとき、折り目の線分をBDとしたものである。
このとき、BDの長さを求めよ。

※図は動画内参照
投稿日:2023.01.22

<関連動画>

【高校受験対策/数学】図形36

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形36

Q
右の図のように、線分$AB$を直径とする半円があり、$AB=8cm$とします。
弧$AB$上に点$C$を、$\angle ABC=30°$となるようにとります。
線分$AB$の中点を点$D$とし、点$D$を通り線分$AB$に垂直な直線と線分$BC$との交点を$E$とします。次の各問いに答えなさい。

①$\triangle ABC \backsim \triangle EBD$を証明しなさい。

②線分$DE$の長さを求めなさい。

③$△BCD$を、線分$AB$を軸として1回転させてできる立体の体積を求めなさい。
ただし、円周率は$\pi$を用いなさい。
この動画を見る 

【高校受験対策/数学】死守55

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55

①$(-3)^2+2 \times (-5)$を計算しなさい。

②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。

③$(-4xy)^2×(-3x)$を計算しなさい。

④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$

⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。

⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。

②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。

⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。

⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。

⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る 

平面図形 2024京都府(改)

アイキャッチ画像
単元: #数学(中学生)#平面図形
指導講師: 数学を数楽に
問題文全文(内容文):
BD=? (BC<CD)
*図は動画内参照
2024京都府(改)
この動画を見る 

【限られた条件から面積を求める!】図形:早稲田大学系属早稲田実業学校高等部~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \triangle ABC$は直角三角形,半円:$ PQ $が直径であり,
2点$ S,T $で接する.
$ BT=5$cm,$ BP=1$cmである.
影の部分の面積を求めよ.

早稲田実業高等部過去問
この動画を見る 

福田のおもしろ数学041〜立体の切断〜立方体を切った切り口

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中1数学#空間図形#立体図形#立体切断
指導講師: 福田次郎
問題文全文(内容文):
立方体 ABCD-EFGH を 3 点 P,Q,E を通る平面で切ったときの切り口を作図せよ。
※図は動画内参照
この動画を見る 
PAGE TOP