【中学数学あるある】式変形で気持ち良く解ける計算問題 #Shorts - 質問解決D.B.(データベース)

【中学数学あるある】式変形で気持ち良く解ける計算問題 #Shorts

問題文全文(内容文):
$\sqrt{85^2-84^2+61^2-60^2-26×11}$

これを解け。
単元: #数学(中学生)#中3数学#平方根
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\sqrt{85^2-84^2+61^2-60^2-26×11}$

これを解け。
投稿日:2022.08.22

<関連動画>

平方数  九州学院(熊本)

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$20(3n+6)$がある整数の平方になる最小の自然数nを求めよ。

九州学院高等学校
この動画を見る 

【高校受験対策/数学】死守77

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守77

①$-3+(-2)$を計算しなさい。

➁$8-4÷(-2)^2$を計算しなさい。

③$5×(-5a)$を計算しなさい。

④$\frac{1}{2}x^2y÷\frac{1}{4}xy$を計算しなさい。

⑤$\sqrt{48}-\sqrt{3}$を計算しなさい。

⑥$(2a-b)^2$を展開しなさい。

⑦$x^2-x-42$を因数分解しなさい。

⑧半径が$6cm$で中心角が$45°$のおうぎ形の面積を求めなさい。
ただし、円周率は$\pi$とする。

⑨解が$-5,1$の2つの数となる、$x$についての2次方程式を1つ作りなさい。

⑩次のア~エのうち、数の集合と四則との関係について述べた文として正しいものをすべて選び、記号で答えなさい。

ア 自然数と自然数の加法の結果は、いつでも自然数となる。
イ 自然数と自然数の減法の結果は、いつでも整数となる。
ウ 自然数と自然数の乗法の結果は、いつでも自然数となる。
エ 自然数と自然数の除法の結果は、いつでも整数となる。
この動画を見る 

不等式:東大寺学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)#東大寺学園高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東大寺学園高等学校

次の問いに答えよ。
$\displaystyle \frac{4}{\sqrt{ n }-\sqrt{ 2 }}$
整数部分が$2$
($(n \geqq 3)$:自然数)
として考えられる値をすべて求めよ。

(正の数$x$の整数部分とは、$x$以下の整数のうち
最大のものを表す。)
この動画を見る 

ルート含む数の大小関係  青山学院

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
次の数を小さい順に並べ記号で答えよ
ア. $\frac{7}{6}$
イ. $\frac{\sqrt {10}}{3}$
ウ. $\sqrt{\frac{7}{6}}$
エ. $\frac{\sqrt5}{2}$

青山学院大学高等部
この動画を見る 

【高校受験対策】数学-死守8

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#文章題#文章題その他#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$4 \times (5+2)$を計算しなさい.

②$\dfrac{2}{3}-\dfrac{1}{5}$を計算しなさい.

③$24\div (-6)$を計算しなさい.

④$3(2x-y)-(x+5y)$を計算しなさい.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+3y=8 \\
2x-y=-5
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑥$x^2+x-56$を因数分解しなさい.

⑦$(\sqrt{27}-\sqrt3)\times \sqrt2$を計算しなさい.

⑧方程式$x^2-5x+1=0$を解きなさい.

⑨下の図のように,$\triangle ABC$の辺$BC$を延長して$CD$とし,
辺$CA$を延長して$AE$とします.
$\angle ABC=41°,\angle ACD=124°$のとき,
$\angle BAE$の大きさは何度ですか.

⑩1箱60円のチョコレートと1個40円のあめが売られています.
このチョコレートとあめを買うとき,代金をちょうど500円にするには,
買い方は全部で何通りありますか.

図は動画内を参照
この動画を見る 
PAGE TOP