福田の数学〜早稲田大学2021年理工学部第5問〜正四面体と球の位置関係 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年理工学部第5問〜正四面体と球の位置関係

問題文全文(内容文):
${\Large\boxed{5}}$ 正四面体$OABC$に対し、三角形$ABC$の外心を$M$とし、$M$を中心として点$A,B,C$
を通る球面を$S$とする。また、$S$と辺$OA,OB,OC$との交点のうち、$A,B,C$とは異なる
ものをそれぞれ$D,E,F$とする。さらに、$S$と三角形$OAB$の共通部分として得られる
弧$DE$を考え、その弧を含む円周の中心をGとする。$\overrightarrow{ a }=\overrightarrow{ OA },\ \overrightarrow{ b }=\overrightarrow{ OB },\ \overrightarrow{ c }=\overrightarrow{ OC }$
として、以下の問いに答えよ。
(1)$\overrightarrow{ OD },\ \overrightarrow{ OE },\ \overrightarrow{ OF },\ \overrightarrow{ OG }を\overrightarrow{ a },\ \overrightarrow{ b },\ \overrightarrow{ c }$を用いて表せ。

(2)三角形$OAB$の面積を$S_1$、四角形$ODGE$の面積を$S_2$とするとき、$S_1:S_2$を
できるだけ簡単な整数比により表せ。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$ 正四面体$OABC$に対し、三角形$ABC$の外心を$M$とし、$M$を中心として点$A,B,C$
を通る球面を$S$とする。また、$S$と辺$OA,OB,OC$との交点のうち、$A,B,C$とは異なる
ものをそれぞれ$D,E,F$とする。さらに、$S$と三角形$OAB$の共通部分として得られる
弧$DE$を考え、その弧を含む円周の中心をGとする。$\overrightarrow{ a }=\overrightarrow{ OA },\ \overrightarrow{ b }=\overrightarrow{ OB },\ \overrightarrow{ c }=\overrightarrow{ OC }$
として、以下の問いに答えよ。
(1)$\overrightarrow{ OD },\ \overrightarrow{ OE },\ \overrightarrow{ OF },\ \overrightarrow{ OG }を\overrightarrow{ a },\ \overrightarrow{ b },\ \overrightarrow{ c }$を用いて表せ。

(2)三角形$OAB$の面積を$S_1$、四角形$ODGE$の面積を$S_2$とするとき、$S_1:S_2$を
できるだけ簡単な整数比により表せ。
投稿日:2021.05.28

<関連動画>

【数C】【空間ベクトル】四面体ABCDに対して,等式AP+3BP+4CP+8DP=0を満たす点Pはどのような位置にあるか。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCDに対して,等式$\overrightarrow{ AP }+3\overrightarrow{ BP }+4\overrightarrow{ CP }+8\overrightarrow{ DP }=\overrightarrow{ 0 }$を満たす点Pはどのような位置にあるか。
この動画を見る 

【高校数学】 数B-42 空間ベクトルの内積②

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2つのベクトル$\overrightarrow{a}=(0,2,1),\overrightarrow(b)=(2,-2,1)$に垂直で,
大きさが3であるベクトル$\overrightarrow{p}$を求めよう.

②3点$A(0,1,1),B(-1,-1,2),C(2,3,1)$を頂点とする$\triangle ABC$について,
$\angle BAC$の大きさと$\triangle ABC$の面積を求めよう.
この動画を見る 

【数B】空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。
この動画を見る 

【数C】【空間ベクトル】大きさが2で,x軸の正の向きとなす角が45°、y軸の正の向きとなす角が60°であるような空間ベクトルを成分表示せよ。また,そのベクトルがz軸の正の向きとなす角は何度か。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
大きさが2で,x軸の正の向きとなす角が45°、y軸の正の向きとなす角が60°であるような空間ベクトルを成分表示せよ。また,そのベクトルがz軸の正の向きとなす角は何度か。
この動画を見る 

福田の数学〜東京大学2023年理系第4問〜球面と三角形が共有点をもつ条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#空間ベクトル#集合と命題(集合・命題と条件・背理法)#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標空間内の4点O(0,0,0), A(2,0,0), B(1,1,1), C(1,2,3)を考える。
(1)$\overrightarrow{OP}\bot\overrightarrow{OA}$, $\overrightarrow{OP}\bot\overrightarrow{OB}$, $\overrightarrow{OP}\bot\overrightarrow{OC}$=1 を満たす点Pの座標を求めよ。
(2)点Pから直線ABに垂線を下ろし、その垂線と直線ABの交点をHとする。
$\overrightarrow{OH}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
(3)点Qを$\overrightarrow{OQ}$=$\frac{3}{4}\overrightarrow{OA}$+$\overrightarrow{OP}$により定め、Qを中心とする半径rの球面Sを考える。Sが三角形OHBと共有点を持つようなrの範囲を求めよ。ただし、三角形OHBは3点O, H, Bを含む平面内にあり、周とその内部からなるものとする。

2023東京大学理系過去問
この動画を見る 
PAGE TOP