ただの計算問題 - 質問解決D.B.(データベース)

ただの計算問題

問題文全文(内容文):
計算せよ
$
\\
(\frac{1+\sqrt{13}}{2})^7+(\frac{1
-\sqrt{13}}{2})^7


$
単元: #大学入試過去問(数学)
指導講師: 鈴木貫太郎
問題文全文(内容文):
計算せよ
$
\\
(\frac{1+\sqrt{13}}{2})^7+(\frac{1
-\sqrt{13}}{2})^7


$
投稿日:2023.10.07

<関連動画>

#茨城大学(2022) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{18}}^{\frac{\pi}{9}} \sin^23x\ dx$

出典:2022年茨城大学
この動画を見る 

大学入試問題#431「もはや盤上この一手!!」 福井大学医学部2014 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\sin3x}{\sin\ x+\cos\ x} dx$

出典:2014年福井大学医学部 入試問題
この動画を見る 

題一回!京大あるある!京大を象徴する特徴5選【篠原好】

アイキャッチ画像
単元: #その他#京都大学#京都大学#京都大学#その他#京都大学
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
題一回!京大あるある!
「京大を象徴する特徴5選」についてお話しています。
この動画を見る 

東工大 秀才栗崎 微分積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=\displaystyle \frac{1}{x}(x \gt 0)$と$y=- \displaystyle \frac{1}{x}(x \lt 0)$の接線および$x$軸を囲まれる三角形の面積の最大

出典:1975年東京工業大学 過去問
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第3問〜空間における面対称な点と折れ線の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}$正四面体$OABC$の辺$BC$の中点をM、辺OCを1:2に内分する点をNとする。
点Nと平面OABに関して対称な点をPとする。このとき、
$\overrightarrow{ OP }=\frac{\boxed{\ \ ア\ \ }\ \overrightarrow{ OA }+\boxed{\ \ イ\ \ }\ \overrightarrow{ OB }+\boxed{\ \ ウ\ \ }\ \overrightarrow{ OC }}{\boxed{\ \ エ\ \ }}$
である。
次に、点Qは平面OAB上の点で$|\overrightarrow{ MQ }|+|\overrightarrow{ QN }|$が最小になる点とする。
このとき、
$\overrightarrow{ OQ }=\frac{\boxed{\ \ オ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ カ\ \ }\ \overrightarrow{ OB }}{\boxed{\ \ キ\ \ }}$
である。

2022早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP