【球面の方程式って?】球面の方程式の解釈と求め方を解説!〔数学、高校数学〕 - 質問解決D.B.(データベース)

【球面の方程式って?】球面の方程式の解釈と求め方を解説!〔数学、高校数学〕

問題文全文(内容文):
球面の方程式の解釈と求め方について解説します。
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
球面の方程式の解釈と求め方について解説します。
投稿日:2022.05.18

<関連動画>

鳥取大 空間 直線・平面の方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
鳥取大学過去問題
$l_1:\frac{x-1}{2}=\frac{y-2}{-3}=z-4$
$l_2:\frac{x-2}{a^3}=\frac{y-3}{-b^2}=\frac{z-2}{b-1}$
$l_3:\frac{x-4}{-2a}=\frac{y-2}{b}=\frac{z-1}{a}$
A(1,2,4) B(2,3,2) C(4,2,1)
(1)A,B,Cを通る平面πの方程式
(2)$l_1$がπ上にある
(3)$l_2$,$l_3$がπ上にあるa,bの値
この動画を見る 

【数B】空間ベクトル: 四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第4問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ tを実数とする。また、Oを原点とする座標空間内に\\
3点A(4,2,5),\ B(-1,1,1),\ C(2-t,4-3t,6+2t)をとる。\\
(1)\triangle OABの面積を求めよ。\\
(2)4点O,A,B,Cが同一平面上にあるとき、Cの座標を求めよ。\\
(3)点Cがxy平面上にあるとき、四面体OABCの体積Vを求めよ。\\
(4)四面体OABCの体積が(3)で求めたVの3倍となるようなtの値を\\
すべて求めよ。
\end{eqnarray}

2022慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜東北大学2023年理系第5問〜空間ベクトルと内積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 四面体OABCにおいて、$\overrightarrow{a}$=$\overrightarrow{OA}$, $\overrightarrow{b}$=$\overrightarrow{OB}$, $\overrightarrow{c}$=$\overrightarrow{OC}$とおき、次が成り立つとする。
$\angle$AOB=60°, |$\overrightarrow{a}$|=2, |$\overrightarrow{b}$|=3, |$\overrightarrow{c}$|=$\sqrt 6$, $\overrightarrow{b}$・$\overrightarrow{c}$=3
ただし、$\overrightarrow{b}$・$\overrightarrow{c}$は、2つのベクトル$\overrightarrow{b}$と$\overrightarrow{c}$の内積を表す。さらに、線分OCと線分ABは垂直であるとする。点Cから3点O, A, Bを含む平面に下ろした垂線をCHとし、点Oから3点A, B, Cを含む平面に下ろした垂線をOKとする。
(1)$\overrightarrow{a}$・$\overrightarrow{b}$と$\overrightarrow{c}$・$\overrightarrow{a}$を求めよ。
(2)ベクトル$\overrightarrow{OH}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ。
(3)ベクトル$\overrightarrow{c}$とベクトル$\overrightarrow{HK}$は平行であることを示せ。

2023東北大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第4問〜空間ベクトルと三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} P(0,0,-1),\ Q(0,1,-2),\ R(1,0,-2)を頂点とする三角形の面積は\boxed{\ \ ヘ\ \ }である。\\
aを実数とし、\overrightarrow{ v }=(a,a,3)とする。点P',Q',R'を\\
\overrightarrow{ OP' }=\overrightarrow{ OP }+\overrightarrow{ v },\ \overrightarrow{ OQ' }=\overrightarrow{ OQ }+\overrightarrow{ v },\ \overrightarrow{ OR' }=\overrightarrow{ OR }+\overrightarrow{ v }\\
によって定め、さらに線分PP',QQ',RR'がxy平面と交わる点をP'',Q'',R''とする。\\
このとき、P''の座標は\boxed{\ \ ホ\ \ }、Q''の座標は\boxed{\ \ マ\ \ }、R''の座標は\boxed{\ \ ミ\ \ }である。\\
\triangle P''Q''R''が正三角形になるのはa=\boxed{\ \ ム\ \ }のときである。\\
3点P'',Q'',R''が同一直線上にあるのはa=\boxed{\ \ メ\ \ }のときである。a \gt \boxed{\ \ メ\ \ }のとき、\\
\triangle P''Q''R''の面積をaで表すと\boxed{\ \ モ\ \ }となる。
\end{eqnarray}

2021慶應義塾大学看護医療学部過去問
この動画を見る 
PAGE TOP