【中学数学】1次関数の基礎~分からない人はこれを見ろ~ 3-1【中2数学】 - 質問解決D.B.(データベース)

【中学数学】1次関数の基礎~分からない人はこれを見ろ~ 3-1【中2数学】

問題文全文(内容文):
1次関数の式を求めよ

(1)傾き2で、x=4のとき,y=3
(2)変化の割合が5で点(3,2)を通る
(3)(2,-1)(4,-13)を通る
チャプター:

00:00 はじまり

00:23 基礎の話

04:20 例題演習

09:39 まとめ

10:08 まとめノート

単元: #数学(中学生)#中2数学#1次関数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1次関数の式を求めよ

(1)傾き2で、x=4のとき,y=3
(2)変化の割合が5で点(3,2)を通る
(3)(2,-1)(4,-13)を通る
投稿日:2021.08.05

<関連動画>

【中2 P.29】式の計算の特訓②

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2.次の計算をしよう.

$\boxed{1} \dfrac{4x+y}{5}-\dfrac{2x-y}{3}$

$\boxed{2} (-2x)^2\div \dfrac{2}{3}x$

$\boxed{3} 14x^2y^2\div (-4x)\div (-21xy)$

$\boxed{4} 5x-y-\dfrac{x-2y}{3}$

$\boxed{5} 6x\div \dfrac{9}{4}y \times 3xy$

$\boxed{6} \dfrac{1}{8}(5x-3y)+\dfrac{1}{4}(-x-8y+3)$
この動画を見る 

【中学数学】式の計算:等式変形マスターへの道 3発目!『カッコは取ってから編』 l=2(a+b)をb=の形にしましょう。

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 理数個別チャンネル
問題文全文(内容文):
l=2(a+b)をb=の形にしましょう。
この動画を見る 

確率なんてジャンジャンバリバリですよ~全国入試問題解法 #shorts #数学 #高校入試 #頭の体操 #確率

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
袋の中には6個の玉があり,この袋の中から同時に2個の玉を取り出す.
2個とも青玉である確率は$ \Box $である.
*どの玉が取り出されることも同様に確からしいものとする.

全国入試過去問題
この動画を見る 

【高校受験対策】数学-死守32

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#平行と合同#確率#速さ#速さその他#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-2+5$を計算しなさい。

②$3 + 3 ^ 4 \div (- 9)$を計算しなさい。

③$4(2a - 3) - 2(3a - 5)$を計算しなさい。

④$\dfrac{x-y}{6}-\dfrac{x+y}{8}$を計算しなさい。

⑤$3\sqrt8 - \sqrt{50} + sqrt{18}$を計算しなさい。

⑥2次方程式$(x + 2)(x - 2) = 2(3x - 2)$を解きなさい。

⑦かずよしくんは、自宅から1800mはなれた学校に登校するため、
午前7時30分に家を出発した。
最初は毎分60mの速さで歩いていたが、遅刻しそうになったので、
途中から毎分100mの速さで走ったところ、午前7時56分に学校に着いた。
かずよしくんが走った道のりは何mか、求めなさい。

⑧赤球3個と白球3個が入っている袋がある。
この袋の中から、同時に2個の球を取り出すとき、
赤球と白球が1個ずつである確率を求めなさい。
ただし、どの球を取り出すことも、同様に確からしいものとする。

⑨左下の図1で、正六角形$ABCDEF$に、2つの平行な直線$\ell、m$が交わっており、
交点はそれぞれ$G、H、I、J$である。
$\angle GHF=78°$のとき、$\angle IJE$の大きさを求めなさい。

⑩ある中学校の1年A組25人と1年B組25人の休日の学習時間を調べた。
下の図2、 図3は、それぞれの結果をヒストグラムに表したもので、
2つの図から「1年A組は1年B組 より、$\Box$」と読みとることができた。
$\Box$にあてはまるものとして適切なものを、 下のア~エから1つ選び、記号で書きなさい。

ア→学習時間の分布の範囲が小さい
イ→最頻値を含む階級の度数が多い
ウ→中央値を含む、階級の度数が少ない
エ→学習時間が150分以上の人数が多い

図は動画内参照
この動画を見る 

三平方の定理を使わずに解くこともできます

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#三平方の定理#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
この動画を見る 
PAGE TOP