【ミスしやすい構造とは…!】二次方程式:東京都立八王子東高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【ミスしやすい構造とは…!】二次方程式:東京都立八王子東高等学校~全国入試問題解法

問題文全文(内容文):
2次方程式$ 3(3-x)=2(x-2)^2$を解け.

都立八王子東高校過去問
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#東京都立八王子東高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2次方程式$ 3(3-x)=2(x-2)^2$を解け.

都立八王子東高校過去問
投稿日:2024.02.05

<関連動画>

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、$a,b,c,d$は全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、$n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$a_1,a_2,\cdot,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} $$\geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 

因数分解 白陵高校

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
p(p+1)-q(q+1)を因数分解

白陵高等学校
この動画を見る 

平行線と比

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#平行と合同#相似な図形
指導講師: 数学を数楽に
問題文全文(内容文):
$x=$
図は動画内参照
この動画を見る 

2023高校入試数学解説84問目 一次関数と二次関数  埼玉県学校選択問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#1次関数#2次関数#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=ax^2$
$y=bx+c$
a,b,c大小関係を不等号で表せ
*図は動画内参照

2023埼玉県
この動画を見る 

【受験対策】  数学-規則性①

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
同じ長さのマッチ棒を用いて、下の図のように、一定の規則にしたがって、1番目、2番目、3番目、…とマッチ棒をつなぎ合わせて図形をつくっていく。
用いたマッチ棒の数は1番目では4本、2番目では12本、 3番目では24本である。

①5番目の図形をつくるには何本のマッチ棒が必要?

②14番目の図形をつくるには何本のマッチ棒が必要?

③n番目の図形をつくるには何本のマッチ棒が必要か、nの式で表そう。
※図は動画内参照
この動画を見る 
PAGE TOP