【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第1問解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第1問解説

問題文全文(内容文):
次の空欄(a)~(d)を適当に補え。
(1) iを虚数単位とする。複素数$(2-i)^2$の実部は$(a)$である。
(2) $\theta$がすべての実数を動くとき、$\cos\theta+\cos2\theta$の最小値は$(b)$である。
(3) コインを5回投げて、すべて同じ面がでる確率をpとする。このとき$\log_2 p$は$(c)$である。
(4) xの関数 f(x)は$\displaystyle \int_{0}^{2}(f(t)+2t)dt=x^3+x^2+x$を満たす。このとき、$f(x)=(d)$である。

チャプター:

0:00 オープニング
0:15 (1)の解き方
1:39 (2)の解き方
3:34 (3)の解き方
4:57 (4)の解き方
6:29 まとめ

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の空欄(a)~(d)を適当に補え。
(1) iを虚数単位とする。複素数$(2-i)^2$の実部は$(a)$である。
(2) $\theta$がすべての実数を動くとき、$\cos\theta+\cos2\theta$の最小値は$(b)$である。
(3) コインを5回投げて、すべて同じ面がでる確率をpとする。このとき$\log_2 p$は$(c)$である。
(4) xの関数 f(x)は$\displaystyle \int_{0}^{2}(f(t)+2t)dt=x^3+x^2+x$を満たす。このとき、$f(x)=(d)$である。

投稿日:2022.01.01

<関連動画>

福田の数学〜慶應義塾大学看護医療学部2025第1問(4)〜三角関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)関数$y=(2\sin 2x+\sin x)+\sin x (0\leqq x \lt 2\pi)$は、

$x=\boxed{オ}$のとき最大値$\boxed{カ}$をとる。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

大学入試問題#713「さすがに合同式を利用」 早稲田商学部(2016) 合同式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$2^{100}$を$2016$で割ったときの余りを求めよ。

出典:2016年早稲田大学商学部 入試問題
この動画を見る 

早稲田の簡単すぎる問題!満点必須です【数学 入試問題】【早稲田大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$が$\dfrac{1}{3}≦x≦9$の範囲を動くとき,関数 $f(x)=(\log_\frac{1}{3}9x)(log_\frac{1}{3}\dfrac{x}{3})$の最大値と最小値を求めよ。

早稲田大過去問
この動画を見る 

福田の数学〜神戸大学2022年文系第1問〜場合分けされた放物線と直線の共有点と囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とする。$x \geqq 0$のとき$f(x)=^2、x \lt 0$のとき$f(x)=-x^2$とし、
曲線$y=f(x)$をC、直線$y=2ax-1$を$l$とする。以下の問いに答えよ。
(1)Cとlの共有点の個数を求めよ。
(2)Cとlがちょうど2個の共有点をもつとする。Cとlで囲まれた図形の面積を求めよ。

2022神戸大学文系過去問
この動画を見る 

名古屋大 円の方程式 2円と直線に接する円 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'08名古屋大学過去問題
2つの円、$x^2+(y-2)^2=9$と$(x-4)^2+(y+4)^2=1$に外接し、x=6と接する円を求めよ。
この動画を見る 
PAGE TOP