学校別大学入試過去問解説(数学) - 質問解決D.B.(データベース)

学校別大学入試過去問解説(数学)

大学入試問題#869「次数は分子の方が高いのね」 #玉川大学(2022) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
問題文全文(内容文):
$\displaystyle \frac{12n^2+13n+51}{3n+1}$が整数となるような整数$n$をすべて求めよ。

出典:2022年玉川大学 入試問題
この動画を見る 

#岩手大学2024#定積分_34

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi} (4\pi^2-t^2)\cos t dt$

出典:2024年岩手大学
この動画を見る 

#福島大学2023#定積分_33

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\sqrt{ 3 }}^{ 1 } \sqrt{ 4-x^2 } dx$

出典:2023年福島大学
この動画を見る 

大学入試問題#923「帰納法で解いても良いのかな」

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=1,$ $a_n \neq 0$
$a_n=3(\sqrt{ S_n }-\sqrt{ S_{n-1} }),2 \leq n$

1.$a_2$を求めよ。
2.$\sqrt{ S_n }$を求めよ。
3.$a_n$を求めよ。

出典:1999年 千葉大学
この動画を見る 

#南山大学2021#定積分_32

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ 2 }} x\sqrt{ 4-x^2 } dx$

出典:2021年南山大学
この動画を見る 

#福島大学2024#定積分_31#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{24}} \sin x\cos x\cos 2x dx$

出典:2024年福島大学
この動画を見る 

大学入試問題#922「できればスッと解きたい」

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{3}^{4} \displaystyle \frac{4x^2-9x+6}{(x-1)(x-2)^2} dx$

出典:2023年福島大学
この動画を見る 

#青山学院大学2023#定積分_30#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos3x\cos\displaystyle \frac{x}{3} dx$

出典:2023年 青山学院大学
この動画を見る 

#広島市立大学2024#不定積分_29#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^x}{e^{2x}-4} dx$

出典:2024年広島市立大学
この動画を見る 

大学入試問題#921「癖がない綺麗な神問題」

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 1$
$I(a)=\displaystyle \int_{0}^{ \pi }\displaystyle \frac{a\sin\theta}{(a^2-2a \cos\theta+1)^{\frac{3}{2}}}d\theta$

1.$I(a)$を求めよ。
2.$\displaystyle \sum_{n=2}^{\infty} I(n)$の値を求めよ。

出典:1997年千葉大学
この動画を見る 

#京都大学1965#微分_28#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{x^3}$において
$f'(1)$を定義に従って求めよ。

出典:1965年京都大学
この動画を見る 

#高知工科大学2024#定積分_27#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高知工科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \cos^2x dx$

出典:2024年高知工科大学
この動画を見る 

大学入試問題#920「工夫しがいがある問題」

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^4+x^2+1}{x^3-1}(x \gt 1)$

出典:1963年 一橋大学
この動画を見る 

#高専#不定積分_19#元高専教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^{2x}-e^{-2x}}{e^x-e^{-x}} dx$

出典:国立高等専門学校機構
この動画を見る 

#青山学院大学2023#定積分_26#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} \tan^2x dx$

出典:2023年青山学院大学
この動画を見る 

大学入試問題#919「昔は落ち着いた問題」

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x-\displaystyle \frac{1}{x}=1$のとき、
$x^5+\displaystyle \frac{1}{x^5}$の値を求めよ。
この動画を見る 

#高専#不定積分_18#元高専教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int\displaystyle \frac{2x+1}{(x^2+x+5)^3} dx$

出典:国立高等専門学校機構
この動画を見る 

#高知工科大学2024#定積分_25#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#高知工科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{3} x|x-2| dx$

出典:2024年 高知工科大学
この動画を見る 

#高専#不定積分_17#元高専教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int\displaystyle \frac{(logx+1)^2}{x} dx$
この動画を見る 

#明治大学2023#定積分_24#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \sin^2 2x dx$

出典:2023年明治大学
この動画を見る 

大学入試問題#917「さすがに落とせん」

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ 1+x+x^2 }$
$x=1$における微分係数を定義に従って求めよ

出典:1965年京都大学
この動画を見る 

式の値 名城大附属

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=2 \sqrt 2 - \sqrt 3$のとき
$x^4-22x^2=?$

名城大学附属高等学校
この動画を見る 

約束記号 四天王寺

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 数学を数楽に
問題文全文(内容文):
$\langle\langle x \rangle\rangle=2x-1$とする
$\langle\langle \quad \langle\langle 2x \rangle\rangle -1 \rangle\rangle=x^2+10$
$x=?$

四天王寺高等学校
この動画を見る 

解の公式不要 2024慶應義塾

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
解け
$2x^2+10\sqrt2x+9=0$

慶応義塾大学2024
この動画を見る 

2024次方程式の解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2024}+2x^{2023}+3x^{2022}+$$ ……+2024x+2025=0$の$2024$個の解を
$\alpha,\alpha_{2},\alpha_{3}……\alpha_{2024}$とする

$(1-\displaystyle \frac{1}{\alpha_{1}})(1-\displaystyle \frac{1}{\alpha_{2}})……(1-\displaystyle \frac{1}{\alpha_{2024}})$の値を求めよ

出典:OnLineMath Contest
この動画を見る 

式の値 國學院久我山

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a-b=\sqrt 6$, ab=2のとき$a^2-b^2=?$
この動画を見る 

面積比 2024専修大松戸

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDは平行四辺形
△EHI:▱ABCD=?
*図は動画内参照
この動画を見る 

【高校数学】遂に完結!!北海道大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分104日目~47都道府県制覇への道~【㊼北海道】【最終回】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【北海道大学 2024】
関数
$f(x)=xlog(x+2)+1 (x>-2)$
を考える。$y=f(x)$で表される曲線を$C$とする。$C$の接線のうち傾きが正で原点を通るものを$l$とする。ただし、$logt$は$t$の自然対数である。
(1) 直線$l$の方程式を求めよ。
(2) 曲線$C$は下に凸であることを証明せよ。
(3) $C$と$l$および$y$軸で囲まれた部分の面積を求めよ。
この動画を見る 

【高校数学】弘前大学の積分の問題をその場で解説しながら解いてみた!毎日積分103日目~47都道府県制覇への道~【㊻青森】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【弘前大学 2023】
$\displaystyle \int_\frac{-π}{4}^\frac{π}{3}\frac{x}{cos^2x}dx$
この動画を見る 

【高校数学】岩手大学の積分の問題をその場で解説しながら解いてみた!毎日積分102日目~47都道府県制覇への道~【㊺岩手】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
■【岩手大学 2023】
(1) 不定積分$\displaystyle \int \frac{x^2}{\sqrt{x-1}}dx$を求めよ
(2) 次の曲線と$x$軸で囲まれた図形の面積を求めよ。
$\displaystyle y=cos2x+\frac{1}{2} (\frac{π}{4}≦x≦\frac{3}{4}π)$
(3) 曲線$y=\sqrt{x+1}e^{2x}$と$x$軸、$y$軸、および直線$x=1$で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積を求めよ。
この動画を見る 
PAGE TOP