【受験算数】 穴のあき方:64個の小さな立方体で作られた大きな立方体にあけられた穴の個数を求める方法を解説! - 質問解決D.B.(データベース)

【受験算数】 穴のあき方:64個の小さな立方体で作られた大きな立方体にあけられた穴の個数を求める方法を解説!

問題文全文(内容文):
64個の小さな立方体で右図のような大きな立方体を作ります。つきぬける穴を図のようにあけたとき、おのおのの小さな立方体について、1つも穴のあいていない立方体、1方向あいている立方体、2方向あいている立方体、3方向あいている立方体はそれぞれいくつあるか求めなさい。
チャプター:

0:00 オープニング
0:17 イメージ
1:28 状況を図で整理(下準備)
2:49 あとは数える!!
6:38 おまけ

単元: #算数(中学受験)#立体図形#立体図形その他
教材: #SPX#6年算数W-支援#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
64個の小さな立方体で右図のような大きな立方体を作ります。つきぬける穴を図のようにあけたとき、おのおのの小さな立方体について、1つも穴のあいていない立方体、1方向あいている立方体、2方向あいている立方体、3方向あいている立方体はそれぞれいくつあるか求めなさい。
投稿日:2019.05.22

<関連動画>

【中学受験算数】魔方陣は感覚?いいえ理論です! 【毎日1題!中学受験算数9】

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#数の性質その他#規則性(周期算・方陣算・数列・日暦算・N進法)
指導講師: こばちゃん塾
問題文全文(内容文):
たて、横、ななめの数の和が同じになるように、下の魔法陣を完成させましょう。
*図は動画内参照
この動画を見る 

【分からない数は?だったら…】文章題:八代白百合学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#文章題#文章題その他#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
現在,お父さんは42歳,子どもは12歳です.
お父さんの年齢が,子どもの年齢の3倍になるのは何年後か.

八代白百合学園高等学校過去問
この動画を見る 

2024年東邦大付属東邦中算数「相似」中学受験指導歴20年のプロ解説

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#平面図形#相似と相似を利用した問題#東邦大学付属東邦中学
指導講師: 重吉
問題文全文(内容文):
動画内の図のような、三角形$ABC$があります。
このとき、$AD$の長さは何cmか求めなさい。
ただし、同じしるしはそれぞれ同じ角度を表しています。

出典:東邦大学付属東邦中学校 入試問題
この動画を見る 

近畿大学附属高等学校~入試予想問題

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#近畿大学附属中学
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 近畿大学附属高等学校

定番の良問

$\displaystyle \frac{5x-2y}{3}-\displaystyle \frac{2x-3y}{2}-\displaystyle \frac{3x+2y}{5}$
の計算をせよ。
$x^2-2x-3-y^2-4y$
の因数分解せよ。

・大小$2$つのさいころを投げて出た目を それぞれ$a,ℓ$とする。
$\sqrt{ a^{ℓ} }$が整数となる確率?
・$\sqrt{ 7 }$より大きく、$3\sqrt{ 5 }$より小さい整数 は何個あるか。

図のように
$y=\displaystyle \frac{1}{4}x^2$と直線
$y=-x+3$・・・①がある
また、直線②は①と、傾きが等しく、
切片が$5$だけ大きい。
$A、B、C、D$は図の通りの位置関係
(1) 四角形$ABCD$の面積?
(2)Oを通り、$\Box ABCD$を$2$分する直線?
※図は動画内参照

半径$9cm$の円○がある。
$E$弦$AB$の長さを$12cm$とし、
直径$BC$上に点$D$を$BD:DC = 1:2$となるようにとる。
また、線分$AD$を点$D$の方へ延長した半直線と円○との交点を$E$とする。
(1)点$D$から線分$AB$に重線。交点$H$。$DH=?$
(2)$AE = ?$
(3)$\triangle ABC$と$\triangle BED$の面積比?
※図は動画内参照
この動画を見る 

【受験算数】平面図形:合同な図形を探す 【洛南高附中2019】

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#平面図形#角度と面積#洛南高校附属中学
指導講師: 理数個別チャンネル
問題文全文(内容文):
図において、△AEGと△ACDは正三角形で、△FBCはFB=FCの二等辺三角形です。角アの大きさを求めなさい。
この動画を見る 
PAGE TOP