高等学校入学試験予想問題:青山学院高等部~全部入試問題 - 質問解決D.B.(データベース)

高等学校入学試験予想問題:青山学院高等部~全部入試問題

問題文全文(内容文):
$ \boxed{1}$

0から9までの整数が1つずつ書かれた10枚のカードから3枚を選び,並べて3桁の自然数を作る.
ただし,同じカードは1回しか使えないとする.
百の位より十の位,十の位より一の位の数字が大きくなるような3の倍数はいくつできるか.

$ \boxed{2}$

図のように,1辺の長さが2の正方形$ABCD$と,$QR=6,PR=3,\angle PRQ=90°$の$\triangle PQR$がある.
$ \triangle PQR$は辺$QR$が,正方形$ABCD$は辺$BC$がそれぞれ直線$\ell$上にある.
正方形が$ \ell $にそって矢印の方向に毎秒1の速さで動く.
点$C$と点$Q$が一致している時から$t$秒後の正方形と$ \triangle PQR$が重なった部分の面積を$S$とするとき,次の各場合について$S$を$t$で表せ.
(1)$ 0\leqq t\leqq 2 $のときの$S$の値.
(2)$ 2\leqq t\leqq 4$のときの$S$の値.
(3)$ 4\leqq t\leqq 6$のときの$S$の値.

$ \boxed{3}$

図のように,正四角錐$ A-BCDE$があり,辺$AB$の中点を$M$とする.
底面の正方形$BCDE$の対角線$BD$と$CE$の交点を$F$とすると,$AF=8$cmである.
次の問いに答えよ.
(1)底面の正方形$BCDE$の一辺の長さが$9$cmのとき,対角線$BD$の長さは何cmか.
  また,正四角錐$A-BCDE$の体積は何$cm^3$か.
(2)正四角錐$A-BCDE$を3点$M,C,E$を通る平面で2つに切り分ける.
頂点$B$を含む立体の体積を$V1cm^3$,頂点$B$を含まない立体の体積を$V2cm^3$と
  するとき,$V1$と$V2$の体積比を最も簡単な整数比で表せ.
単元: #数学(中学生)#中1数学#空間図形#文章題#文章題その他#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

0から9までの整数が1つずつ書かれた10枚のカードから3枚を選び,並べて3桁の自然数を作る.
ただし,同じカードは1回しか使えないとする.
百の位より十の位,十の位より一の位の数字が大きくなるような3の倍数はいくつできるか.

$ \boxed{2}$

図のように,1辺の長さが2の正方形$ABCD$と,$QR=6,PR=3,\angle PRQ=90°$の$\triangle PQR$がある.
$ \triangle PQR$は辺$QR$が,正方形$ABCD$は辺$BC$がそれぞれ直線$\ell$上にある.
正方形が$ \ell $にそって矢印の方向に毎秒1の速さで動く.
点$C$と点$Q$が一致している時から$t$秒後の正方形と$ \triangle PQR$が重なった部分の面積を$S$とするとき,次の各場合について$S$を$t$で表せ.
(1)$ 0\leqq t\leqq 2 $のときの$S$の値.
(2)$ 2\leqq t\leqq 4$のときの$S$の値.
(3)$ 4\leqq t\leqq 6$のときの$S$の値.

$ \boxed{3}$

図のように,正四角錐$ A-BCDE$があり,辺$AB$の中点を$M$とする.
底面の正方形$BCDE$の対角線$BD$と$CE$の交点を$F$とすると,$AF=8$cmである.
次の問いに答えよ.
(1)底面の正方形$BCDE$の一辺の長さが$9$cmのとき,対角線$BD$の長さは何cmか.
  また,正四角錐$A-BCDE$の体積は何$cm^3$か.
(2)正四角錐$A-BCDE$を3点$M,C,E$を通る平面で2つに切り分ける.
頂点$B$を含む立体の体積を$V1cm^3$,頂点$B$を含まない立体の体積を$V2cm^3$と
  するとき,$V1$と$V2$の体積比を最も簡単な整数比で表せ.
投稿日:2023.01.28

<関連動画>

【中1 数学】中1-24 関係を表す式②

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$2x+5y \lt 3000$のような式を①____っていうよ。
ちなみに、 ②____と③____のときは、$\leqq,\geqq$を使って、
④____も含むって意味なんだ!

⑤ある数$X$から$6$をひくと、$5$より小さい。

⑥ある数$a$の$4$倍からろをひいた数は、 もとの数$a$の$2$倍より大きい。

⑦$1$個$X$円のりんご$3$個と、$1$個$8$円の メロン$1$個を買うと、$1200$円以下だった。

⑧$X$と$y$の積は$12$未満である。

⑨$30m$のテープから、$Xm$のテープを$5$本
切り取ると、$ym$以上のテープが残る。

⑩$3$人で$a$円ずつ出すと、$5000$円のものを
買うことができる。
この動画を見る 

【中学数学】文字式の足し算・かけ算のイメージ 2-5【中1数学】

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
文字式の足し算・かけ算についての説明動画です
この動画を見る 

【中学数学】規則性の演習~岐阜県公立高校入試2019~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式#高校入試過去問(数学)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
規則性の演習 入試頻発問題を使用しての解説動画です
この動画を見る 

【高校受験対策】数学-図形19

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#立体図形#立体図形その他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
図1の立体は、$AB=6cm、 AD = 2cm 、 AE = 4cm$の直方体である。
このとき、次の問に答えなさい。

①辺$AB$とねじれの位置にあり、面$ABCD$と平行である辺はどれか、すべて答えなさい。

②図2のように、面$EFGH$の対角線$EG、HF$の交点を$I$とする。
$\triangle DHI$を、辺$DH$を軸として1回転させてできる円すいの母線の長さを求めなさい。
(図3のように、$AB、BF$上の点をそれぞれ$P、Q$とする)

③図3において、$DP+PQ+QG$が最小となるときの
$DP+PQ+QC$の値を求めなさい。

④図3において、$DP+PQ+QG$が最小となるときの、
三角すい$BPQC$の体積を求めなさい。

図は動画内参照
この動画を見る 

因数分解の解法の流れをつかむ30秒~全国入試問題解法 #shorts #数学 #高校入試 #mathematics #動体視力 #裏ワザ

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ (x^2+x)^2-x(x+1)-2 $を因数分解しなさい.

明大中野高校過去問
この動画を見る 
PAGE TOP