【暗記するだけじゃなく、考えるだけじゃなく!】整数:和洋国府台女子高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【暗記するだけじゃなく、考えるだけじゃなく!】整数:和洋国府台女子高等学校~全国入試問題解法

問題文全文(内容文):
自然数$n$のすべての約数の和を$f(n)$で表すことにする.
自然数$x$は約数が3個で,$f(x)=57$を満たしている.
$x$を求めよ.

和洋国府台女子高校過去問
単元: #数学(中学生)#中1数学#正の数・負の数#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
自然数$n$のすべての約数の和を$f(n)$で表すことにする.
自然数$x$は約数が3個で,$f(x)=57$を満たしている.
$x$を求めよ.

和洋国府台女子高校過去問
投稿日:2023.01.21

<関連動画>

【テスト対策 中1】6章-6

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①図1のように、底面の半径が4cmの円錐を、頂点を固定して転がしたところ、
ちょうど3回転してもとの位置にもどった。
このとき、この円錐の側面積を求めなさい。

②図2の図形を、直線$\ell$を軸として
1回転したときにできる立体の表面積と体積をそれぞれ求めなさい。

図は動画内参照
この動画を見る 

【中1 数学】中1-34 方程式の利用 あわせて編

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①150円の梨と120円の桃を合わせて15個買うと、2070円でした。
梨と桃をそれぞれ何個買ったかな?

②370円のケーキと180円のプリンを合わせて8個買い、150円に箱に入れてもらうと、全部で2160円でした。
ケーキとプリンをそれぞれ何個買ったかな?

③とある中学生の人数は、男女合わせて450人で、男子は女子より16人少ない。
男子と女子の人数は何人?
この動画を見る 

【保存版】二等分線の平面図形の裏技

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【保存版】二等分線の平面図形の裏技
この動画を見る 

【中学数学】中学数学:数学検定3級2次:問題3・4

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#数学検定・数学甲子園・数学オリンピック等#比例・反比例#確率#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題3.下の①~⑥の式で表される関数のグラフについて、次の問いに答えなさい。
  ① y = 3x   ② y = -3x  ③ y = 1/3 x
  ④ y = -1/3 x ⑤ y = 3/x  ⑥ y = -3/x

(5) グラフが点(-1,3)を通る関数を、①~⑥の中からすべて選びなさい。
(6) グラフが双曲線である関数を、①~⑥の中からすべて選びなさい。

問題4.箱の中に、赤球が3個、白球が2個、黒球が1個入っています。この箱の中から球を取り出すとき、次の問いに答えなさい。
(7) 球を1個取り出すとき、取り出した球が白球である確率を求めなさい。
(8) 同時に2個の球を取り出すとき、取り出した球が2個とも赤球である確率を求めなさい。
(9) 同時に2個の球を取り出すとき、取り出した球が異なる色である確率を求めなさい。
この動画を見る 

【高校受験対策】数学-図形18

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#円#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の図1のような$\triangle ABC$があります。
点$D、E$はそれぞれ辺$AB、BC$上の点で、$\angle BDE =\angle ACB$です。
$AD = 2cm 、 DB = 8cm 、 BE = 6cm$のとき、$EC$の長さを求めなさい。

② 右の図2は、正方形$ABCD$と、おうぎ形$BAC$、おうぎ形$CBD$を組み合わせたものです。
点$E$は$\stackrel{\huge\frown}{AC}$と$\stackrel{\huge\frown}{BD}$との交点です。
正方形$ABCD$の1辺の長さが$12cm$のとき、$\stackrel{\huge\frown}{BE}$の長さを求めなさい。 ただし、円周率は$\pi$とします。

③右の図3のような四角形$ABCD$があり、対角線$AC$と対角線$BD$との交点を$E$とする。
線分$BE$上に、2点$B、E$と異なる点$F$をとり、直線$AF$と辺$BC$との交点を$G$とする。
四角形$ABCD$の面積が$50cm²$、$△AGC$の面積が$30cm$、
$BF:FD=3:4、AF:FG=2:1$であるとき、$△ACD$の面積は何$cm^2$か。

図は動画内参照
この動画を見る 
PAGE TOP