問題文全文(内容文):
(1)原点Oと2点A(-1, 2, -3)、B(-3, 2, 1)に対して、p=(1-t)OA+tOBとする。|p|の最小値とそのときの実数tの値を求めよ。
(2)定点A(-1, -2, 1)、B(5, -1, 3)とzx平面上の動点Pに対し、AP+PBの最小値を求めよ。
(1)原点Oと2点A(-1, 2, -3)、B(-3, 2, 1)に対して、p=(1-t)OA+tOBとする。|p|の最小値とそのときの実数tの値を求めよ。
(2)定点A(-1, -2, 1)、B(5, -1, 3)とzx平面上の動点Pに対し、AP+PBの最小値を求めよ。
チャプター:
0:00 オープニング
0:05 問題文(1)
0:12 問題解説(1)
2:50 問題文(2)
2:57 問題解説(2)
5:56 名言
単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)原点Oと2点A(-1, 2, -3)、B(-3, 2, 1)に対して、p=(1-t)OA+tOBとする。|p|の最小値とそのときの実数tの値を求めよ。
(2)定点A(-1, -2, 1)、B(5, -1, 3)とzx平面上の動点Pに対し、AP+PBの最小値を求めよ。
(1)原点Oと2点A(-1, 2, -3)、B(-3, 2, 1)に対して、p=(1-t)OA+tOBとする。|p|の最小値とそのときの実数tの値を求めよ。
(2)定点A(-1, -2, 1)、B(5, -1, 3)とzx平面上の動点Pに対し、AP+PBの最小値を求めよ。
投稿日:2020.10.19