問題文全文(内容文):
$\Large\boxed{1}$ (1)座標空間に3点O(0,0,0), A(1,0,a), B(0,1,b)をとり、O,A,Bによって定められる平面をαとする。ただし、a>0, b>0とする。平面αとxy平面との交線をlとすると、lはOを通り、ベクトル$\overrightarrow{u}$=(1, $\boxed{あ}$,0)に平行な直線である。また平面αとxy平面のなす角をθ(ただし0≦θ≦$\frac{\pi}{2}$)とすると、$\cos\theta$=$\boxed{\ \ い\ \ }$である。
2020慶應義塾大学医学部過去問
$\Large\boxed{1}$ (1)座標空間に3点O(0,0,0), A(1,0,a), B(0,1,b)をとり、O,A,Bによって定められる平面をαとする。ただし、a>0, b>0とする。平面αとxy平面との交線をlとすると、lはOを通り、ベクトル$\overrightarrow{u}$=(1, $\boxed{あ}$,0)に平行な直線である。また平面αとxy平面のなす角をθ(ただし0≦θ≦$\frac{\pi}{2}$)とすると、$\cos\theta$=$\boxed{\ \ い\ \ }$である。
2020慶應義塾大学医学部過去問
単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)座標空間に3点O(0,0,0), A(1,0,a), B(0,1,b)をとり、O,A,Bによって定められる平面をαとする。ただし、a>0, b>0とする。平面αとxy平面との交線をlとすると、lはOを通り、ベクトル$\overrightarrow{u}$=(1, $\boxed{あ}$,0)に平行な直線である。また平面αとxy平面のなす角をθ(ただし0≦θ≦$\frac{\pi}{2}$)とすると、$\cos\theta$=$\boxed{\ \ い\ \ }$である。
2020慶應義塾大学医学部過去問
$\Large\boxed{1}$ (1)座標空間に3点O(0,0,0), A(1,0,a), B(0,1,b)をとり、O,A,Bによって定められる平面をαとする。ただし、a>0, b>0とする。平面αとxy平面との交線をlとすると、lはOを通り、ベクトル$\overrightarrow{u}$=(1, $\boxed{あ}$,0)に平行な直線である。また平面αとxy平面のなす角をθ(ただし0≦θ≦$\frac{\pi}{2}$)とすると、$\cos\theta$=$\boxed{\ \ い\ \ }$である。
2020慶應義塾大学医学部過去問
投稿日:2023.02.09