共通一次 三角関数 数学 - 質問解決D.B.(データベース)

共通一次 三角関数 数学

問題文全文(内容文):
(1)
$\sin \theta + \cos \theta=\sin \theta \cos \theta$であれば
$\sin \theta \cos \theta=[ ]\sqrt{ [ ] }+[ ]$

(2)
$f(x)=\cos^2x-\sqrt{ 5 }\sin x-3$の最大値とそのときの$x$の値$(0 \leqq x \leqq 2\pi)$

出典:共通一次試験 過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\sin \theta + \cos \theta=\sin \theta \cos \theta$であれば
$\sin \theta \cos \theta=[ ]\sqrt{ [ ] }+[ ]$

(2)
$f(x)=\cos^2x-\sqrt{ 5 }\sin x-3$の最大値とそのときの$x$の値$(0 \leqq x \leqq 2\pi)$

出典:共通一次試験 過去問
投稿日:2019.01.18

<関連動画>

【共通テスト】数学IA 第3問確率がめっちゃ簡単になる本質テクニック、教えます(2023年本試)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第3問確率が簡単になるテクニック、解説動画です

球が4つある。
赤、青、黄、緑、紫のうちいずれか1色でそれぞれ塗る。
1本の紐で繋がれた2つの球は異なる色。
赤をちょうど2回使う塗り方は何通り?
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題3。プレゼントの交換の確率の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第3問\ 複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、プレゼントは\\
全て異なるとする。\\
プレゼントの交換は次の手順で行う。\\
手順:外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、\\
各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中の\\
プレゼントを受け取る。\\
\\
交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換をやり直す。\\
そして、全員が自分以外の人の持参したプレゼントを受け取ったところで交換会を終了する。\\
(1)2人または3人で交換会を開く場合を考える。\\
(\textrm{i})2人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は\\
\boxed{\ \ ア\ \ }通りある。したがって1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }}である。\\
(\textrm{ii})3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は\\
\boxed{\ \ エ\ \ }通りある。したがって1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}である。\\
(\textrm{iii})3人で交換会を開く場合、4回以下の交換で交換会が終了する確率は\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}である。\\
\\
\\
(2)4人で交換会を開く場合、1回目の交換で交換会が終了する確率を\\
次の構想に基づいて求めてみよう。\\
構想:1回目の交換で交換会が終了しないプレゼントの受け取り方の総数を求める。\\
そのために、自分の持参したプレゼントを受け取る人数によって場合分けをする。\\
\\
1回目の交換で、4人のうち、ちょうど1人が自分の持参したプレゼントを受け取る場合は\\
\boxed{\ \ サ\ \ }通りあり、ちょうど2人が自分のプレゼントを受け取る場合は\boxed{\ \ シ\ \ }通りある。\\
このように考えていくと、1回目のプレゼントの受け取り方のうち、1回目の交換で交換会が\\
終了しない受け取り方の総数は\boxed{\ \ スセ\ \ }である。\\
したがって、1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。\\
\\
(3)5人で交換会を開く場合、1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}である。\\
\\
(4)A,B,C,D,Eの5人が交換会を開く。1回目の交換でA,B,C,Dがそれぞれ自分以外\\
の人の持参したプレゼントを受け取った時、その回で交換会が終了する\\
条件付き確率は\frac{\boxed{\ \ ナニ\ \ }}{\boxed{\ \ ヌネ\ \ }}である。\\
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

2023年共通テスト数学1A講評【易化】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
2023年共通テスト数学1Aを講評します。

各問題の解き方や、注意すべき点を確認しましょう。

復習の参考にしましょう!
この動画を見る 

5年連続的中!共通テスト2024出題予想~問題流出同然の「今年はコレが出る」一覧

アイキャッチ画像
単元: #大学入試過去問(数学)#化学#生物#センター試験・共通テスト関連#共通テスト#大学入試過去問(化学)#英語(高校生)#国語(高校生)#社会(高校生)#日本史#世界史#大学入試過去問(英語)#大学入試過去問(国語)#共通テスト#共通テスト(現代文)#大学入試過去問(生物)#共通テスト・センター試験#共通テスト(古文)#共通テスト#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#数学(高校生)#理科(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
共通テスト2024の出題予想です。
この動画では私、篠原が過去の問題の傾向から、2024年の共通テストの問題を予想します。
英語・数学・国語・理科・社会に分けて、出題予想、対策方法を紹介しています。
受験生のみなさん、合格目指してラストスパート頑張りましょう!

#共通テスト
#出題予想
#受験生
#共通テスト2024予想
#篠原好
#京都大学
#勉強法
#大学受験
#受験勉強
#大学入試
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題2[2]。データの分析の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
[2] 日本国外における日本語教育の状況を調べるために、独立行政法人国際交流基金では\\
「海外日本教育機関調査」を実施しており、各国における教育機関数,教員数,学習数\\
が調べられている。2018年度において学習者数が5000人以上の国と地域(以下、国)\\
は29ヵ国であった。これら29ヵ国について、2009年度と2018年度のデータが得られている。\\
\\
\\
(1) 各国において、学習者数を教員数で割ることにより、国ごとの\\
「教員1人当たりの学習者数」を算出することができる。図1と図2(※動画参照)は、\\
2009年度および2018年度における「教員1人当たりの学習者数」のヒストグラム\\
である。これら二つのヒストグラムから、9年間の変化に関して、後のことが読み取れる。\\
なお、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を含まない。\\
\\
\\
・2009年度と2018年度の中央値が含まれる階級の階級値を比較すると、\boxed{\ \ ケ\ \ }\\
・2009年度と2018年度の第1四分位数が含まれる階級の階級値を比較すると、\boxed{\ \ コ\ \ }\\
・2009年度と2018年度の第3四分位数が含まれる階級の階級値を比較すると、\boxed{\ \ サ\ \ }\\
・2009年度と2018年度の範囲を比較すると、\boxed{\ \ シ\ \ }。\\
・2009年度と2018年度の四分位範囲を比較すると、\boxed{\ \ ス\ \ }。\\
\\
\boxed{\ \ ケ\ \ }~\boxed{\ \ ス\ \ }を次の⓪~③のうちから一つ選べ。\\
⓪ 2018年度の方が小さい\\
① 2018年度の方が大きい\\
② 両者は等しい\\
③ これら二つのヒストグラムからだけでは両者の大小を判断できない\\
\\
\\
(2)各国において、学習者数を教育機関数で割ることにより、「教育機関1機関あたりの\\
学習者数」も算出した。図3(※動画参照)は、2009年度における\\
「教育機関1機関あたりの学習者数」の箱ひげ図である。\\
\\
2009年度について、「教育機関1機関あたりの学習者数」(横軸)と\\
「教員1人当たりの学習者数」(縦軸)の散布図は\boxed{\ \ セ\ \ }である。ここで、\\
2009年度における「教員1人当たりの学習者数」のヒストグラムである(1)の図1\\
を、図4(※動画参照)として再掲しておく。\\
\\
\boxed{\ \ セ\ \ }については、最も適当なものを、次の⓪~③のうちから一つ選べ。\\
なお、これらの散布図には、完全に重なっている点はない。\\
(※選択肢は動画参照)\\
\\
(3) 各国における2018年度の学習者数を100としたときの2009年度の学習者数S,\\
および、各国における2018年度の教員数を100としたときの2009年度の\\
教員数Tを算出した。\\
例えば、学習者数について説明すると、ある国において、2009年度が44272人,\\
2018年度が174521人であった場合、2009年度の学習者数Sは\\
\frac{44272}{174521}×100 より25.4と算出される。\\
表1(※動画参照)はSとTについて、平均値、標準偏差および共分散を計算したものである。\\
ただし、SとTの共分散は、Sの偏差とTの偏差の積の平均値である。\\
表1の数値が四捨五入していない正確な値であるとして、SとTの相関係数\\
を求めると\boxed{\ \ ソ\ \ }, \boxed{\ \ タチ\ \ } である。\\
\\
(4) 表1と(3)で求めた相関係数を参考にすると、(3)で算出した2009年度の\\
S(横軸)とT(縦軸)の散布図は\boxed{\ \ ツ\ \ }である。\\
\\
\boxed{\ \ ツ\ \ }については、最も適当なものを、次の⓪~③のうちから一つ\\
選べ。なお、これらの散布図には、完全に重なっている点はない。\\
(※選択肢は動画参照)
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 
PAGE TOP