問題文全文(内容文):
(1)
$\sin \theta + \cos \theta=\sin \theta \cos \theta$であれば
$\sin \theta \cos \theta=[ ]\sqrt{ [ ] }+[ ]$
(2)
$f(x)=\cos^2x-\sqrt{ 5 }\sin x-3$の最大値とそのときの$x$の値$(0 \leqq x \leqq 2\pi)$
出典:共通一次試験 過去問
(1)
$\sin \theta + \cos \theta=\sin \theta \cos \theta$であれば
$\sin \theta \cos \theta=[ ]\sqrt{ [ ] }+[ ]$
(2)
$f(x)=\cos^2x-\sqrt{ 5 }\sin x-3$の最大値とそのときの$x$の値$(0 \leqq x \leqq 2\pi)$
出典:共通一次試験 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$\sin \theta + \cos \theta=\sin \theta \cos \theta$であれば
$\sin \theta \cos \theta=[ ]\sqrt{ [ ] }+[ ]$
(2)
$f(x)=\cos^2x-\sqrt{ 5 }\sin x-3$の最大値とそのときの$x$の値$(0 \leqq x \leqq 2\pi)$
出典:共通一次試験 過去問
(1)
$\sin \theta + \cos \theta=\sin \theta \cos \theta$であれば
$\sin \theta \cos \theta=[ ]\sqrt{ [ ] }+[ ]$
(2)
$f(x)=\cos^2x-\sqrt{ 5 }\sin x-3$の最大値とそのときの$x$の値$(0 \leqq x \leqq 2\pi)$
出典:共通一次試験 過去問
投稿日:2019.01.18