2020年センター試験の塾生の結果報告【篠原好】 - 質問解決D.B.(データベース)

2020年センター試験の塾生の結果報告【篠原好】

問題文全文(内容文):
「2020年センター試験の塾生の結果」についての報告です。
単元: #センター試験・共通テスト関連#センター試験#その他#その他
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「2020年センター試験の塾生の結果」についての報告です。
投稿日:2020.01.22

<関連動画>

高2生もセンター試験をやってみよう!【篠原好】

アイキャッチ画像
単元: #センター試験・共通テスト関連#センター試験#その他#勉強法#その他
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「高2生もセンター試験を試してほしい!」理由についてお話しています。
この動画を見る 

2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第5問〜確率分布と統計的な推測

アイキャッチ画像
単元: #大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
ある市の市立図書館の利用状況について調査を行った。

(1)ある高校の生徒720人全員を対象に、ある1週間に市立図書館で借りた本の
冊数について調査を行った。
その結果、1冊も借りなかった生徒が612人、1冊借りた生徒が54人、
2冊借りた生徒が36人であり、3冊借りた生徒が18人であった。
4冊以上借りた生徒はいなかった。

この高校の生徒から1人を無作為に選んだ時、その生徒が借りた本の冊数
を表す確率変数を$X$とする。

このとき、$X$の平均(期待値)は$E(X)=\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$であり、$X^2$の平均は
$E(X^2)=\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。よって、$X$の標準偏差は
$\sigma(X)=\displaystyle \frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}\displaystyle$ である。

(2)市内の高校生全員を母集団とし、ある1週間に市立図書館を利用した生徒の
割合(母比率)を$p$とする。この母集団から600人を無作為に選んだ時、その
1週間に市立図書館を利用した生徒の数を確率変数$Y$で表す。

$p=0.4$のとき、$Y$の平均は$E(Y)=\boxed{\ \ キクケ\ \ }$、標準偏差は$\sigma(Y)=\boxed{\ \ コサ\ \ }$
になる。ここで、$Z=\displaystyle \frac{Y-\boxed{\ \ キクケ\ \ }}{\boxed{\ \ コサ\ \ }}\displaystyle$ とおくと、標本数600は
十分に大きいので、$Z$は近似的に標準正規分布に従う。このことを利用して、
$Y$が215以下となる確率を求めると、その確率は$0.\boxed{\ \ シス\ \ }$になる。

また、$p=0.2$のとき、$Y$の平均は$\boxed{\ \ キクケ\ \ }$の$\displaystyle \frac{1}{\boxed{\ \ セ\ \ }}$倍、
標準偏差は$\boxed{\ \ コサ\ \ }$の$\displaystyle \frac{\sqrt{\boxed{\ \ ソ\ \ }}}{3}$倍である。

(3)市立図書館に利用者登録のある高校生全員を母集団とする。1回あたりの
利用時間(分)を表す確率変数を$W$とし、$W$は母平均$m$,母標準偏差30の分布
に従うとする。この母集団から大きさ$n$の標本$W_1,W_2,\ldots,W_n$を無作為に
抽出した。
利用時間が60分をどの程度超えるかについて調査するために
$U_1=W_1-60, U_2=W_2-60, \ldots, U_n=W_n-60$
とおくと、確率変数$U_1,U_2, \cdots, U_n$の平均と標準偏差はそれぞれ
$E(U_1)=E(U_2)=\cdots=E(U_n)$$=m-\boxed{\ \ タチ\ \ }$
$\sigma(U_1)=\sigma(U_2)=\cdots=\sigma(U_n)$$=\boxed{\ \ ツテ\ \ }$
である。

ここで、$t=m-60$として、$t$に対する信頼度95%の信頼区間を求めよう。
この母集団から無作為抽出された100人の生徒に対して$U_1,U_2, \cdots,U_m$の
値を調べたところ、その標本平均の値が50分であった。標本数は十分大きい
ことを利用して、この信頼区間を求めると
$\boxed{\ \ トナ\ \ }.\boxed{\ \ ニ\ \ } \leqq t \leqq \boxed{\ \ ヌネ\ \ }.\boxed{\ \ ノ\ \ }$
になる。

2020センター試験過去問
この動画を見る 

絶対にやってはいけない!センター試験でのNG5選!【篠原好】

アイキャッチ画像
単元: #センター試験・共通テスト関連#センター試験#その他#その他
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
絶対にやってはいけない!
「センター試験でのNG5選」についてお話しています。
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第2問〜三角比、データの分析

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#データの分析#三角比への応用(正弦・余弦・面積)#データの分析#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第2問}$
[1]$\triangle ABC$において、$BC=2\sqrt2$とする。$\angle ACB$の二等分線と辺$AB$の交点
を$D$とし、$CD=\sqrt2,\cos\angle BCD=\displaystyle\frac{3}{4}$とする。このとき、$BD=\boxed{\ \ ア\ \ }$
であり、

$\sin\angle ADC=\frac{\sqrt{\boxed{\ \ イウ\ \ }}}{\boxed{\ \ エ\ \ }}$

である。$\displaystyle\frac{AC}{AD}=\sqrt{\boxed{\ \ オ\ \ }}$ であるから

$AD=\boxed{\ \ カ\ \ }$

である。また、$\triangle ABC$の外接円の半径は$\displaystyle\frac{\boxed{\ \ キ\ \ }\sqrt{\boxed{\ \ ク\ \ }}}{\boxed{\ \ ケ\ \ }}$ である。

[2](1)次の$\boxed{\ \ コ\ \ },\boxed{\ \ サ\ \ }$に当てはまるものを、下の⓪~⑤のうちから
一つずつ選べ。ただし、解答の順序は問わない。

99個の観測地からなるデータがある。四分位数について述べた記述
で、どのようなデータでも成り立つものは$\boxed{\ \ コ\ \ }$と$\boxed{\ \ サ\ \ }$である。

⓪平均値は第1四分位数と第3四分位数の間にある。
①四分位範囲は標準偏差より大きい。
②中央値よりっ地裁観測地の個数は49個である。
③最大値に等しい観測値を1個削除しても第1四分位数は変わらない。
④第1四分位数より小さい観測値と、第3四分位数より大きい観測値と
をすべて削除すると、残りの観測地の個数は51個である。
⑤第1四分位数より小さい観測値と、第3四分位数より大きい観測値と
をすべて削除すると、残りの観測地からなるデータの範囲はもとの
データの四分位範囲に等しい。


(2)図1(※動画参照)は、平成27年の男の市区町村別平均寿命のデータを47の都道府県
P1,P2,$\cdots$,P47ごとに箱ひげ図にして、並べたものである。

次の$(\textrm{I}),(\textrm{II}),(\textrm{III})$は図1に関する記述である。

$(\textrm{I})$四分位範囲はどの都道府県においても1以下である。
$(\textrm{II})$箱ひげ図は中央値が小さい値から大きい値の順に上から
下へ並んである。
$(\textrm{III})$P1のデータのどの値とP47のデータのどの値とを
比較しても1.5以上の差がある。

次の$\boxed{\ \ シ\ \ }$に当てはまるものを、下の⓪~⑦のうちから一つ選べ。

$(\textrm{I}),(\textrm{II}),(\textrm{III})$の正誤の組み合わせとして正しいものは$\boxed{\ \ シ\ \ }$である。
(※選択肢は動画参照)


(3)ある県は20の市区町村からなる、図2(※動画参照)はその県の男の市区町村別平均
寿命のヒストグラムである。なお、ヒストグラムの各階級の区間は、左側の数値を
含み、右側の数値を含まない。

次の$\boxed{\ \ ス\ \ }$に当てはまるものを、下の⓪~⑦のうちから一つ選べ。
図2のヒストグラムに対応する箱ひげ図は$\boxed{\ \ ス\ \ }$である。
(※選択肢は動画参照)


(4)図3(※動画参照)は、平成27年の男の都道府県別平均寿命と女の都道府県別平均
寿命の散布図である。2個の点が重なって区別できないところは黒丸にしている。
図には補助的に切片が5.5から7.5まで0.5刻みで傾き1の直線を5本付加している。
次の$\boxed{\ \ セ\ \ }$に当てはまるものを、下の⓪~③のうちから一つ選べ。

都道府県ごとに男女の平均寿命の差をとったデータに対するヒストグラム
は$\boxed{\ \ セ\ \ }$である。なお、ヒストグラムの各階級の区間は、
左側の数値を含み、右側の数値を含まない。
(※選択肢は動画参照)

2020センター試験過去問
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第1問

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1]$a$を定数とする。
(1)直線$l:y=(a^2-2a-8)x+a$ の傾きが負となるのは、$a$の値の範囲が

$\boxed{\ \ アイ\ \ } \lt a \lt \boxed{\ \ ウ\ \ }$

のときである。

(2)$a^2-2a-8 \ne 0$とし、(1)の直線$l$と$x$軸との交点の$x$座標を$b$とする。
$a \gt 0$の場合、$b \gt 0$となるのは$\boxed{\ \ エ\ \ } \lt a \lt \boxed{\ \ オ\ \ }$のときである。
$a \leqq 0$の場合、$b \gt 0$となるのは$a \lt \boxed{\ \ カキ\ \ }$のときである。
また、$a=\sqrt3$のとき

$b=\frac{\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}-\boxed{\ \ コ\ \ }}{\boxed{\ \ サシ\ \ }}$

である。

[2]自然数$n$に関する三つの条件$p,q,r$を次のように定める。

$p:n$は$4$の倍数である
$q:n$は$6$の倍数である
$r:n$は$24$の倍数である

条件$p,q,r$の否定をそれぞれ$\bar{ p },\bar{ q },\bar{ r }$で表す。
条件$p$を満たす自然数全体の集合を$P$とし、条件$q$を満たす自然数全体
の集合を$Q$とし、条件$r$を満たす自然数全体の集合を$R$とする。自然数全体
の集合を全体集合とし、集合$P,Q,R$の補集合をそれぞれ$\bar{ P },\bar{ Q },\bar{ R }$で表す。

(1)次の$\boxed{\ \ ス\ \ }$に当てはまるものを、下の⓪~⑤のうちから一つ選べ。

$32 \in \boxed{\ \ ス\ \ }$である。
⓪$P \cap Q \cap R$ ①$P \cap Q \cap \bar{ R }$ ②$P \cap \bar{ Q }$
③$\bar{ P } \cap Q$ ④$\bar{ P } \cap \bar{ Q } \cap R$ ⑤$\bar{ P } \cap \bar{ Q } \cap \bar{ R }$

(2)次の$\boxed{\ \ タ\ \ }$に当てはまるものを、下の⓪~④のうちから一つ選べ。

$P \cap Q$に属する自然数のうち最小のものは$\boxed{\ \ セソ\ \ }$である。
また、$\boxed{\ \ セソ\ \ }\ \boxed{\ \ タ\ \ }\ R$である。

⓪= ①$\subset$ ②$\supset$ ③$\in$ ④$\notin$

(3)次の$\boxed{\ \ チ\ \ }$に当てはまるものを、下の⓪~③のうちから一つ選べ。

自然数$\boxed{\ \ セソ\ \ }$は、命題$\boxed{\ \ チ\ \ }$の反例である。

⓪「($p$かつ$q$) $\implies \bar{ r }$」 ①「($p$または$q$) $\implies \bar{ r }$」 
②「$r \implies$ ($p$かつ$q$)」 ③「($p$かつ$q$) $\implies r$」 

[3]$c$を定数とする。2次関数$y=x^2$のグラフを、2点$(c,0),$ $(c+4,0)$
を通るように平行移動して得られるグラフを$G$とする。

(1)$G$をグラフにもつ2次関数は、$c$を用いて

$y=x^2-2\left(c+\boxed{\ \ ツ\ \ }\right)\ x+$$c\left(c+\boxed{\ \ テ\ \ }\right)$

と表せる。
$2$点$(3,0),$ $(3,-3)$を両端とする線分と$G$が共有点をもつような
$c$の値の範囲は

$-\boxed{\ \ ト\ \ } \leqq c \leqq \boxed{\ \ ナ\ \ },$ $\boxed{\ \ ニ\ \ } \leqq c \leqq \boxed{\ \ ヌ\ \ }$

である。

(2)$\boxed{\ \ ニ\ \ } \leqq c \leqq \boxed{\ \ ヌ\ \ }$の場合を考える。$G$が点$(3,-1)$を通る
とき、$G$は2次関数$y=x^2$のグラフを$x$軸方向に$\boxed{\ \ ネ\ \ }+\sqrt{\boxed{\ \ ノ\ \ }}$。
$y$軸方向に$\boxed{\ \ ハヒ\ \ }$だけ平行移動したものである。また、このとき
$G$と$y$軸との交点の$y$座標は$\boxed{\ \ フ\ \ }+\boxed{\ \ ヘ\ \ }\sqrt{\boxed{\ \ ホ\ \ }}$である。

2020センター試験過去問
この動画を見る 
PAGE TOP