【数学】2023年度 第2回 K塾高2模試 全問解説 - 質問解決D.B.(データベース)

【数学】2023年度 第2回 K塾高2模試 全問解説

問題文全文(内容文):
第1問:小問集合
(1)$(3x-1)(9x^2+3x+1)$を展開せよ。
(2)$\displaystyle \frac{x-1}{1+\frac{1}{x+2}}$を簡単にせよ。
(3)2次関数$y=2x^2-x+1$の最小値を求めよ。
(4)iを虚数単位とする。$\displaystyle \frac{(2+i)^2}{i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=4,BC=\sqrt{7},CA=\sqrt{3}$である△ABCにおいて、cos∠BACの値と△ABCの面積を求めよ。
(6)a,a,b,b,c,cの6文字を1列に並べるとき、並べ方は全部で何通りか。このうち、a,aが隣り合わないような並べ方は何通りか。

第2問-i:2次不等式
aは正の定数とする。実数xについての2つの不等式 $ax^2+(2a-5)x-2a+1<0$・・・①、$│2x-3│≦3$・・・②がある。
(1)a=2のとき、①を解け。
(2)②を解け。
(3)②を満たすすべての実数xに対して、①が成り立つようなaの値の範囲を求めよ。

第2問-ii:図形と方程式
xy平面上に、2つの円$C₁:x^2+y^2-10x-a^2-4a+21=0、C2:x^2+y^2=5$がある。また、C₂上の点P(2,1)におけるC₂の 接線を$l$とする。ただし、aはa>-2を満たす定数とする。
(1)a=1のとき、C₁の中心の座標と半径を求めよ。
(2)$l$の方程式を求めよ。
(3)C₁と$l$が接するようなaの値を求めよ。また、このとき のC1と$l$の接点をQとするとき、線分PQの長さを求めよ。

第3問:複素数と方程式
a,bを実数の定数とする。xの3次式$ f(x)=x^3+(a+3)x^2+(3a+b)x+3b$ と、3次方程式 $f(x)=0$・・・(*)がある。
(1)f(-3)を求めよ。
(2)a=-1かつb=1のとき、(*)を解け。
(3)(*)が異なる2つの虚数解をもつためのa,bの条件を求めよ。
(4)a,bが(3)で求めた条件を満たすとし、(*)の異なる2つの虚数解をα,βとする。このとき、$α^2,β^2$がともに(*)の解となるようなa,bの値の組(a,b)をすべて求めよ。

第4問:確率
5枚のカード1,1,2,2,3が入った袋が1つあり、次の操作(I)を考える。
操作(I): 袋から2枚のカードを同時に取り出し、取り出した2枚のカードに書かれた数の和をXとし、取り出した2枚のカードを袋に戻す。
(1)操作(I)を1回行う。
(i)X=2となる確率を求めよ。
(ii)X=4となる確率を求めよ。
さらに、1枚の硬貨を用意し、操作(I)で定まるXの値に対して、次の操作(II)を考える。
操作(II):1枚の硬貨を投げ、表が出たらY=X+1とし、裏が出たらY=Xとする。
操作(I), (II)を(I), (II)の順に1回ずつ行うことを操作Tとする。
(2)操作Tを1回行う。
(i)Y=4となる確率を求めよ。
(ii)Yの期待値を求めよ。
(3)操作Tを3回繰り返すとき、3回のYの値の合計が15になる確率を求めよ。

第5問:三角関数
aを実数の定数とする。θの方程式$cos2θ+2(5a-1)sinθ-12a^2+6a-1=0$・・・(*)がある
(1)cos2θをsinθを用いて表せ。
(2)a=0とする。0≦θ<2πにおいて、(*)を解け。
(3)0≦θ<2πにおいて、(*)が異なる4個の解をもつとする。
(i)aのとり得る値の範囲を求めよ。
(ii)0≦θ<2πにおける(*)の4個の解を、小さい順にθ₁,θ₂,θ₃,θ₄とする。(θ₂-θ₁)+(θ₄-θ₃)=πとなるようなaの値を求めよ。

第6問:数列
nは自然数。等差数列{a_n}があり、a₁+a₂=8,a₄+a₅=20である。また、公比が実数である等比数列{b_n}があり、
b₁+b₂=4, b₄+b₅=108である。
(1)数列{a_n}の一般項を求めよ。また、数列{a_n}の初項から第n項までの和S_nを求めよ。
(2)数列{b_n}の一般項を求めよ。
(3)数列{c_n}は、左から順に次のような項が並べられた数列である。 b₁がa₁個、b₂がa₂個、b₃がa₃個、...、b_nがa_n個、... すなわち、{c}: b₁,...,b₁, b₂,...,b₂, b₃,..,b₃,...,b_n,...,b_n,...
(i)C₂₀₂₃の値を求めよ。ただし、結果は2¹⁰⁰のように指数表示のままでよい。
(ii)$\displaystyle \sum_{k=1}^{2023}c_k$の値を求めよ。ただし、結果は$2^{100}$のように指数表示のままでよい。
チャプター:

0:00 オープニング
0:05 第1問の問題文:小問集合
0:10 (1)展開
0:48 (2)繁分数の整理
1:43 (3)2次関数の最小値
3:18 (4)iを含む式の整理
4:20 (5-i)余弦定理
5:23 (5-ii)三角形の面積
6:08 (6-i)同じものを含む順列
7:03 (6-ii)隣り合わない並べ方

8:06 第2問-iの問題文:2次不等式
8:17 (1)2次不等式を解け
9:15 (2)絶対値付きの不等式
10:12 (3)絶対不等式

12:00 第2問-iiの問題文:図形と方程式
12:21 (1)円の中心と半径
13:37 (2)円周上の点における接線
14:25 (3)lに接するときの半径。線分の長さ

17:13 第3問の問題文:複素数と方程式
17:27 (1)f(-3)の値
18:08 (2)高次方程式を解け
20:54 (3)虚数解をもつ条件
21:42 (4)条件を満たすa,bの組

27:25 第4問の問題文:確率
27:48 (1-i)X=2のとき
28:23 (1-ii)X=4のとき
29:05 (2-i)Y=4のとき
30:41 (2-ii)Yの期待値
33:31 (3)Yの合計が15になるとき

35:15 第5問の問題文:三角関数
35:25 (1)2倍角の公式
35:37 (2)三角方程式
37:17 (3-i)解を4個持つ条件
39:57 (3-ii)条件を満たすaの値

44:25 第6問の問題文:数列
44:52 (1)等差数列の一般項と和
47:00 (2)等比数列の一般項
48:23 (3-i)2023番目の値
51:37 (3-ii)2023番目までの和
56:36 エンディング

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1問:小問集合
(1)$(3x-1)(9x^2+3x+1)$を展開せよ。
(2)$\displaystyle \frac{x-1}{1+\frac{1}{x+2}}$を簡単にせよ。
(3)2次関数$y=2x^2-x+1$の最小値を求めよ。
(4)iを虚数単位とする。$\displaystyle \frac{(2+i)^2}{i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=4,BC=\sqrt{7},CA=\sqrt{3}$である△ABCにおいて、cos∠BACの値と△ABCの面積を求めよ。
(6)a,a,b,b,c,cの6文字を1列に並べるとき、並べ方は全部で何通りか。このうち、a,aが隣り合わないような並べ方は何通りか。

第2問-i:2次不等式
aは正の定数とする。実数xについての2つの不等式 $ax^2+(2a-5)x-2a+1<0$・・・①、$│2x-3│≦3$・・・②がある。
(1)a=2のとき、①を解け。
(2)②を解け。
(3)②を満たすすべての実数xに対して、①が成り立つようなaの値の範囲を求めよ。

第2問-ii:図形と方程式
xy平面上に、2つの円$C₁:x^2+y^2-10x-a^2-4a+21=0、C2:x^2+y^2=5$がある。また、C₂上の点P(2,1)におけるC₂の 接線を$l$とする。ただし、aはa>-2を満たす定数とする。
(1)a=1のとき、C₁の中心の座標と半径を求めよ。
(2)$l$の方程式を求めよ。
(3)C₁と$l$が接するようなaの値を求めよ。また、このとき のC1と$l$の接点をQとするとき、線分PQの長さを求めよ。

第3問:複素数と方程式
a,bを実数の定数とする。xの3次式$ f(x)=x^3+(a+3)x^2+(3a+b)x+3b$ と、3次方程式 $f(x)=0$・・・(*)がある。
(1)f(-3)を求めよ。
(2)a=-1かつb=1のとき、(*)を解け。
(3)(*)が異なる2つの虚数解をもつためのa,bの条件を求めよ。
(4)a,bが(3)で求めた条件を満たすとし、(*)の異なる2つの虚数解をα,βとする。このとき、$α^2,β^2$がともに(*)の解となるようなa,bの値の組(a,b)をすべて求めよ。

第4問:確率
5枚のカード1,1,2,2,3が入った袋が1つあり、次の操作(I)を考える。
操作(I): 袋から2枚のカードを同時に取り出し、取り出した2枚のカードに書かれた数の和をXとし、取り出した2枚のカードを袋に戻す。
(1)操作(I)を1回行う。
(i)X=2となる確率を求めよ。
(ii)X=4となる確率を求めよ。
さらに、1枚の硬貨を用意し、操作(I)で定まるXの値に対して、次の操作(II)を考える。
操作(II):1枚の硬貨を投げ、表が出たらY=X+1とし、裏が出たらY=Xとする。
操作(I), (II)を(I), (II)の順に1回ずつ行うことを操作Tとする。
(2)操作Tを1回行う。
(i)Y=4となる確率を求めよ。
(ii)Yの期待値を求めよ。
(3)操作Tを3回繰り返すとき、3回のYの値の合計が15になる確率を求めよ。

第5問:三角関数
aを実数の定数とする。θの方程式$cos2θ+2(5a-1)sinθ-12a^2+6a-1=0$・・・(*)がある
(1)cos2θをsinθを用いて表せ。
(2)a=0とする。0≦θ<2πにおいて、(*)を解け。
(3)0≦θ<2πにおいて、(*)が異なる4個の解をもつとする。
(i)aのとり得る値の範囲を求めよ。
(ii)0≦θ<2πにおける(*)の4個の解を、小さい順にθ₁,θ₂,θ₃,θ₄とする。(θ₂-θ₁)+(θ₄-θ₃)=πとなるようなaの値を求めよ。

第6問:数列
nは自然数。等差数列{a_n}があり、a₁+a₂=8,a₄+a₅=20である。また、公比が実数である等比数列{b_n}があり、
b₁+b₂=4, b₄+b₅=108である。
(1)数列{a_n}の一般項を求めよ。また、数列{a_n}の初項から第n項までの和S_nを求めよ。
(2)数列{b_n}の一般項を求めよ。
(3)数列{c_n}は、左から順に次のような項が並べられた数列である。 b₁がa₁個、b₂がa₂個、b₃がa₃個、...、b_nがa_n個、... すなわち、{c}: b₁,...,b₁, b₂,...,b₂, b₃,..,b₃,...,b_n,...,b_n,...
(i)C₂₀₂₃の値を求めよ。ただし、結果は2¹⁰⁰のように指数表示のままでよい。
(ii)$\displaystyle \sum_{k=1}^{2023}c_k$の値を求めよ。ただし、結果は$2^{100}$のように指数表示のままでよい。
投稿日:2024.07.20

<関連動画>

【数学】(一気見用)高2生必見!! 2020年度 第2回 K塾高2模試

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)(a+3)³を展開せよ。
(2)(x-3)/(x²+x) + (x+9)/(x²+3x)を計算せよ。
(3)2次関数y=x²+2x (-2≦x≦2)における最大値をM、最小値をmとして、M-mを求めよ。
(4)iを虚数単位とする。(7+3i)/(1+i)をa+bi (a,bは実数の形で表せ。 )
(5)0°≦θ<180°、sinθ+cosθ=1/2のとき、sinθ・cosθとcosθ-sinθを求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。

大問2-1:2次関数
実数xについての2つの不等式 ax²+2ax-2a+1≦0・・・①
│x-2│≦1・・・② がある。
ただし、aは0でない実数の定数とする。
(1)a=-1のとき、①を解け。
(2)②を解け。
(3)②を満たすすべてのxが①を満たすようなaの値の範囲を求めよ。

大問2-2:図形と計量
三角形ABCにおいて、AB=7、BC=8、CA=3とする。
(1)cos∠BACの値を求めよ。
(2)三角形ABCの面積を求めよ。
(3)三角形ABCの外接円において、点Aを含まない方の弧BC上に、 sin∠BCP:sin∠CBP=1:3となるように点Pをとる。
このとき、線分BPの長さと四角形 ABPCの面積を求めよ。

大問3:確率
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。

大問4:整数の性質
(1)x,zは0以上の整数とする。
(i)z=0,1,2,3,4,5,6,7,8,9,10について、2^zを7で割ったときの余りを順に書き 並べよ。ただし、2⁰=1とする。
(ii)x,zは等式 7x=2^z+3・・・① を満たしている。0≦z≦10のとき、等式①を満たすx,zの組(x,z)をすべて求めよ。
(2)0以上の整数x,y,zが、等式 (4x+3y)(x-y)=2^z・・・② を満たしている。
(i)xが奇数、yが偶数、z=5のとき、等式②を満たすx,yの組(x,y)をすべて求めよ。
(ii)xが奇数、yが偶数、0≦z≦20のとき、等式②を満たすx,y,zの組(x,y,z)の個数 を求めよ。
(iii)z=100で、xとyは偶奇を問わないとき、等式②を満たすx,yの組(x,y)の個数 を求めよ。

大問5:式と証明、複素数と方程式
aを実数の定数とする。xの3次式 P(x)=x³+3x²+3x+a があり、P(-2)=0を満たす。
(1)aの値を求めよ。
(2)方程式P(x)=0を解け。
(3)方程式P(x)=0の虚数解のうち、虚部が正であるものをα、虚部が負であるもの をβと表す。また、方程式P(x)=0の実数解をγと表す。さらに、A=α+1、B=β+1、 C=γ+1とする。
(i)A²+B²、A³、B³の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。A^n+B^n+C^n=0を満たすnの個数を求めよ。

大問6:三角関数
θの関数 f(θ)=1/2sin2θ-√2kcos(θ-π/4)+k² がある。ただし、kは正の定数である。
(1)sin2θ,cos(θ-π/4)のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)f(θ)を(sinθ-p)(cosθ-q) (p,qは定数)の形で表せ。 (ii)k=√3/2のとき、方程式f(θ)=0を0≦θ<2πにおいて解け。
(3)θの方程式f(θ)=0が0≦θ<2πにおいて相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、θの方程式f(θ)=0の0≦θ<2πにおける最小の解をα、最大の解をβと する。α+β=5π/3となるようなkの値を求めよ。

大問7:ベクトル
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
この動画を見る 

【数学模試解説】2024年度第1回K塾マーク模試数Ⅰ,A(新課程)第一問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第一問

[1]方程式$9x^2-6x-1=0$の二つの実数解をα,β(α<β)とすると

$α=\displaystyle \frac{ア-\sqrt{イ}}{ウ}$,$β=\displaystyle \frac{ア+\sqrt{イ}}{ウ}$

である。

(1)$n\lt\displaystyle \frac{1}{β}\lt n+1$を満たす整数nは エ である

(2)xについての連立不等式

$\left\{
\begin{array}{l}
αx \lt 1\\
βx \lt 1
\end{array}
\right.$

を考える。
αの符号に注意すると、不等式①の解は オ と表される。
よって連立不等式①かつ②の解は カ と表される。

オ の解答群

⓪ $x\lt\displaystyle \frac{1}{α}$  ① $\displaystyle \frac{1}{α}\lt x$

カ の解答群

⓪ $x\lt\displaystyle \frac{1}{α}$  ① $\displaystyle \frac{1}{α}\lt x\lt\displaystyle \frac{1}{β}$  ② $\displaystyle \frac{1}{β}\lt x$

(3)-9以上9以下の整数のうち、(2)の連立不等式①かつ②の解の範囲に含まれるものの個数は キ 個である。

[2]△ABCにおいて、$AB=7$,$BC=3\sqrt{2}$,$CA=5$とする。このとき

$cos ∠BAC=\displaystyle \frac{ク}{ケ}$,$sin ∠BAC=\displaystyle \frac{コ}{サ}$

である。

△ABCの外接円の中心Oとすると、円Oの半径は$\displaystyle \frac{シ\sqrt{ス}}{セ}$である。
円OのAを含まない弧BC上に点Pを、△PBCの面積が最大となるようにとる。このとき

$PC=\sqrt{ソ}$

である。

また、直線AOと円Oとの交点のうち、Aと異なる方をDとすると

$CD= タ $

であり、

$∠ADC= チツ°$

である。

直線AD上に動点Qをとり、二つの線分$CQ$、$PQ$の長さの和を $L = CQ + PQ$ とする。

太郎:Lの最小値を求めるにはどうすればよいのかな。
花子:直線ADに関してCと対称な点を考えればよいね。

$AB^2\gt BC^2+CA^2$が成り立つから∠ACBは鈍角であり、直線ADに関して3 点B, C, Pがすべて同じ側にあることに注意して考えると、Lの最小値は$テ\sqrt{ト}$である。
この動画を見る 

【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)$GF=tAB$(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)$AB=\sqrt3,AB・AC=-1,AC=\sqrt7$とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)$AH=kAB$(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る 

予備校講師のストライキはありなのか【賛否両論大揉め中】

アイキャッチ画像
単元: #大学入試過去問(数学)#情報Ⅰ(高校生)#全統模試(河合塾)#英語(高校生)#大学入試過去問(英語)#全統模試(河合塾)#数学(高校生)#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師: Morite2 English Channel
問題文全文(内容文):
緊急速報!予備校業界を揺るがすストライキ騒動で、人気講師が炎上する事態に!

YouTubeチャンネル「Morite2 English Channel」で、河合塾講師による異例のストライキに関する動画が投稿され、大きな波紋を呼んでいる。今回の騒動では、人気予備校講師である荻野(おぎの)先生が、SNS(X)へのある投稿をきっかけに「炎上」してしまった!

荻野先生は、「生徒に迷惑をかけたらダメ」という、予備校講師や生徒の立場からすれば当然とも言える意見を投稿した。しかしこれに対し、多くの社会人や労働者の目線を持つ人々から、「ストライキは迷惑をかけなきゃ意味がない」といった批判が殺到したのだ。ストライキは本来、労働者の権利であり、雇用主に圧力をかけるために消費者側に迷惑がかかるのが目的だという考え方だ。

これは、教育業界の「予備校講師目線」と、一般的な「労働者目線」という、全く異なる立場の意見が激しく衝突した結果だ。教育業界では、ストライキはすべきではないという観念があるため、そもそもストライキを考えたこともない講師が多い。

今回のストライキは、ベテラン講師のコマ単価が長年変わらず、若手講師の賃金も低いという労働問題が背景にある。しかし、ベテラン講師から見て「安い」と感じる年収(500〜600万円程度)でも、若手から見れば「高い」と感じられるため、世代間で意見の対立が生まれている。

ストライキをした講師は、後輩の若い世代のためにも声を上げている可能性がある。しかし、予備校講師は業務委託契約が多く、会社員と違って簡単に契約を切られるリスクがあるため、ストライキをするにはそれなりの覚悟が必要だと指摘されている。

森鉄先生は、荻野先生と同じく「自分ならストライキはしない」としつつも、「する権利はある」という見解を示している。日本では、人に迷惑をかけないことを前提とする文化があるため、今回の行動は「日本の文化を逸脱した」と捉える人もいるのではないかと分析されている。

このストライキ論争は、「日本の予備校講師は労働者なのか?」「教育にストライキは許されるのか?」という根本的な問題を投げかけている。

この激しい議論の行方から、目が離せない!
この動画を見る 

【数学】2023年度 第4回 高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)AB=15, AC=7, ∠BAC=60°の△ABCがある。辺BCの長さと△ABCの内接円の半径を求めよ。
(2)aを実数の定数とする。xの2次方程式x2-ax-a-9=0が-2より小さい解と3より大きい解をもつようなの値の範囲を求めよ。
(3)方程式x3+3x2+2x-6=0を複素数の範囲で解け。
(4)座標平面上の直線y=x上の点で、直線x+2y-4=0までの距離が√5である点の座標をすべて求めよ。
(5)方程式4^(x+1)+7・2^x-2=0を解け。
(6)不等式log₂x+1≧log₂(2-x)を解け。

大問2:三角関数
aを正の定数とし、関数f(θ)をf(θ)=2sin²θ+2√3sinθcosθ+a(√3sinθ+cosθ)-6a²+1とする。
(1)√3sinθ+cosθをrsin(θ+α)の形に表せ。ただし、r>0,-π<α≦πとする。
(2)t=√3sinθ+cosθとおくとき、f(θ)をtの2次式で表せ。
(3)方程式f(θ)=0(0≦θ≦π)…(*)について考える。
(i)a=1のとき、(*)を解け。
(ii)(*)の異なる解の個数がちょうど2個となるようなaの値の範囲を求めよ。

大問3:場合の数
A,B,Cの3人を含む9人の生徒について考える。
(1)4人と5人の2つの組に分けるとき、分け方は何通りあるか。
(2)3人ずつ3つの組に分けるとき、
(i)分け方は全部で何通りあるか。
(ii)AとBが同じ組に入る分け方は何通りあるか。
(3)「9人を3人ずつ3つの班に分けて、それぞれの班で1人ずつ班長を選ぶこと」を班決めということにする。その際、AとBが同じ班に入るときAは班長になることができず、BとCが同じ班に入るときBは班長になることができないものとする。
(i)AとBが同じ班に入り、Cは別の班に入る班決めの仕方は何通りあるか。
(ii)班決めの仕方は全部で何通りあるか。

大問4:微分法
t>0とする。f(x)=x⁴-6x²とし、曲線C:y=f(x)上の点P(t,f(t))におけるCの接線をlとする。
(1)t=1のときのlの方程式を求めよ。また、このときlとCのP以外の共有点の座標を求めよ。
(2)lとCがP以外に異なる2つの共有点をもつようなtの値の範囲を求めよ。
(3)(2)のとき、lとCのP以外の2つの共有点をQ(α,f(α)), R(β,f(β))(a<β)とし、3点P, Q, RにおけるCの接線の傾きをそれぞれmP、mQ、mRとする。このとき、mP+mQ+mRのとり得る値の範囲を求めよ。

大問5:数列
数列{a[n]}(n=1,2,3,…)は公差が正の等差数列でa₁+a₂+a₃=-3. a₁a₃=-3を満たし、数列{b[n]}は
b₁=-1, b[n+1]=│b[n]│+a[n] (n=1,2,3,…)を満たしている。
(1)数列{a[n])の一般項を求めよ。
(2)b₂、b₃を求めよ。また、b≧0となるようなnの値の範囲を求めよ。
(3)n≧4のとき、数列{b[n]}の一般項を求めよ。
(4)n≧4のとき、∑[k=1~n]b[k]を求めよ。
この動画を見る 
PAGE TOP