【高校受験対策/数学】文章題8 - 質問解決D.B.(データベース)

【高校受験対策/数学】文章題8

問題文全文(内容文):
高校受験対策・文章題8

Q.
ある博物館の入館料は、小学生260円、中学生と高校生はともに410円、大人760円である。
ある日の入館者数を調べると、中学生と高校生の合計入館者数は小学生の入館者数の2倍であり、
大人の入館者数は小学生、中学生、高校生の合計入館者数よりも100人少なかった。
この日の小学生の入館者数を$x$人、大人の入館者数を$y$人とするとき、次の問いに答えよ。

①この日の総入館者数を$x$と$y$の両方を用いて表せ。

②さらに、この博物館では1個550円のおみやげを売っており、総入館者数の8割の人が購入した。
この日の総入館者の入館料の合計とおみやげの売上げをあわせた金額は150000円で、おみやげを2個以上買った人はいなかった。
このとき$x$と$y$の値をそれぞれ求めよ。
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・文章題8

Q.
ある博物館の入館料は、小学生260円、中学生と高校生はともに410円、大人760円である。
ある日の入館者数を調べると、中学生と高校生の合計入館者数は小学生の入館者数の2倍であり、
大人の入館者数は小学生、中学生、高校生の合計入館者数よりも100人少なかった。
この日の小学生の入館者数を$x$人、大人の入館者数を$y$人とするとき、次の問いに答えよ。

①この日の総入館者数を$x$と$y$の両方を用いて表せ。

②さらに、この博物館では1個550円のおみやげを売っており、総入館者数の8割の人が購入した。
この日の総入館者の入館料の合計とおみやげの売上げをあわせた金額は150000円で、おみやげを2個以上買った人はいなかった。
このとき$x$と$y$の値をそれぞれ求めよ。
投稿日:2021.01.30

<関連動画>

動体視力と数学を同時に鍛える動画~全国入試問題解法 #Shorts

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
大中小3つのさいころを同時に投げる.
さいころの大の出た目を$a$とし,中の出た目を$b$,小の出た目を$c$とする.
$(a-b)(b-c)=0$となる確率を求めよ.

早稲田実業高等部過去問
この動画を見る 

【中1 数学】  中1-46  比例のグラフを読みとる

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#比例・反比例#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中1 数学 比例のグラフを読みとる
以下の問に答えよ
<xy座標軸上に直線①~③>
直線①~③を表す式を x、y を使って書け



※図は動画内参照
この動画を見る 

【数学】中2-34 一次関数のグラフを読みとる

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
グラフを読みとるときも、書くときと
同じで①____からスタートする。
◎右のグラフは?




※グラフは動画内参照
この動画を見る 

図形の折り返し 聖望学園(埼玉)

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
CD=?
*図は動画内参照

聖望学園高等学校
この動画を見る 

【数学】中2-14 連立方程式① 準備編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$x+y=15$のように、2つの文字を ふくむ一次方程式を
①________という。
そして・・・ $\begin{eqnarray}
\left\{
\begin{array}{l}
2x+y=15 \\
2x+y=9
\end{array}
\right.
\end{eqnarray}$ みたいに
2つの方程式を組にしたものを、 ②________っていって、
これを計算して でた、どちらにもあてはまる文字の値の
組を③________っていうんだ!


$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
2x-y=8
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
x-y=1 \\
x+2y=-1
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=7 \\
-x+y=-6
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
-2x+y=-4 \\
x-3y=9
\end{array}
\right.
\end{eqnarray}$
④㋐~㋓の中で$(3,-2)$が解に
なるすべてを選ぼう!
この動画を見る 
PAGE TOP