【数学】中2-79 確率チャレンジ Lv.1(基本編) - 質問解決D.B.(データベース)

【数学】中2-79 確率チャレンジ Lv.1(基本編)

問題文全文(内容文):
確率をだすときは基本的に①___を使い、
公式は・・・
確率=$\displaystyle \frac{③   }{④   } $なんだ!

◎1つのさいころを投げる!

④5の目がでる確率は?
⑤4以下の目が?
⑥7の目が ?
⑦1けたの数字の目が その他の動画でる確率は?
⑧A.B.C.Dの4人でリレーをします。 4人の走る順番は全部で何通り?
⑨A~Eの中から2人の選手をえらぶと 選び方は全部で何通り?
①~⑨をそれぞれ答えよ。
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
確率をだすときは基本的に①___を使い、
公式は・・・
確率=$\displaystyle \frac{③   }{④   } $なんだ!

◎1つのさいころを投げる!

④5の目がでる確率は?
⑤4以下の目が?
⑥7の目が ?
⑦1けたの数字の目が その他の動画でる確率は?
⑧A.B.C.Dの4人でリレーをします。 4人の走る順番は全部で何通り?
⑨A~Eの中から2人の選手をえらぶと 選び方は全部で何通り?
①~⑨をそれぞれ答えよ。
投稿日:2013.02.13

<関連動画>

福田のおもしろ数学387〜連立方程式を解こう

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 福田次郎
問題文全文(内容文):
$x,y,z$は正の実数とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
x - y + \dfrac{1}{z}=2025 \\
y - z + \dfrac{1}{x}=2025 \\\
z - x + \dfrac{1}{y}=2025
\end{array}
\right.
\end{eqnarray}$

を解いて下さい。
この動画を見る 

どうか筆算しないで。。。

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$19 \times 21 + 20^2 - 40 \times 19 +19^2$

清風高等学校
この動画を見る 

【効率…良く…!】文字式:立教新座高等学校~全国入試問題解法

単元: #数学(中学生)#中2数学#中3数学#連立方程式#平方根#高校入試過去問(数学)#立教新座高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2\sqrt{3}a+\sqrt{3}b=5\\
\sqrt{3}a+2\sqrt{3}b=-3
\end{array}
\right.
\end{eqnarray}\;$のとき、
$a+b$の値を求めなさい。
この動画を見る 

【高校受験対策/数学】図形-37

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形37

Q
右の図は、$AB=$$\sqrt{3}$ cm、$BC=3$ cmの平行四辺形$ABCD$である。
辺$AD$上に$AE=1$ cmとなる点$E$をとり、線分$BD$と線分$CE$の交点を$F$とするとき、次の各問いに答えなさい。

問1
$△ABE$と$△CBD$が相似になることを次のように証明した。
(あ)には角、(い)には数、(う)には辺、(え)にはことばをそれぞれ入れなさい。

【証明】
$△ABE$と$△CBD$について
仮定より$\angle BAE=$ (あ) ・・・①
また$AE:CD=1:$ (い)  ・・・➁
$AB:$ (う) $=\sqrt{3}:3$ 
$=1:$ (い)   ・・・③

➁、③から
$AE:CD=AB:$ (う)  ・・・④

①、④から、2組の辺の(え)とその間の角がそれぞれ等しいので
$\triangle ABE \backsim \triangle CBD$

問2
$△BCF$の面積は$△ABE$の面積の何倍か求めなさい。
この動画を見る 

数学を軽い気持ちで臨む!~全国入試問題解法 #数学 #高校入試 #勉強 #点数 #ライブ

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
数学を軽い気持ちで臨む!

$\begin{eqnarray}
\left\{
\begin{array}{l}
xy + x + 2y= 6 \\
2xy + x-y = 5
\end{array}
\right.
\end{eqnarray}$
を解け。

この動画を見る 
PAGE TOP