【中1 数学】中1-88 近似値 - 質問解決D.B.(データベース)

【中1 数学】中1-88 近似値

問題文全文(内容文):
①~⑪を求めよ。
◎有効数字と有効数字のけた数は?
①$5,2 \times 10^3$
②$7,25 \times 10^4$
③$1,90 \times 10^3$

◎次の測定値を有効数字$3$けたで表すと?
④$2843m$
⑤$34570g$
⑥$82951730km$

◎次の測定値は何の位まで測定したもの
⑦$9,24 \times 10^2g$
⑧$1,40 \times 10^3m$

◎真の値$125,6㎡$を$124,8㎡$と測定しました。
⑨このときの誤差は?

◎ある数の$a$を()の位で四捨五入して近似値をだしました。
$a$の範囲を不等号を使って書こう!!
⑩$329$(小数第$1$位)
⑪$5、6$(小数第$2$位)
単元: #数学(中学生)#中1数学#資料の活用
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①~⑪を求めよ。
◎有効数字と有効数字のけた数は?
①$5,2 \times 10^3$
②$7,25 \times 10^4$
③$1,90 \times 10^3$

◎次の測定値を有効数字$3$けたで表すと?
④$2843m$
⑤$34570g$
⑥$82951730km$

◎次の測定値は何の位まで測定したもの
⑦$9,24 \times 10^2g$
⑧$1,40 \times 10^3m$

◎真の値$125,6㎡$を$124,8㎡$と測定しました。
⑨このときの誤差は?

◎ある数の$a$を()の位で四捨五入して近似値をだしました。
$a$の範囲を不等号を使って書こう!!
⑩$329$(小数第$1$位)
⑪$5、6$(小数第$2$位)
投稿日:2013.02.19

<関連動画>

福田のおもしろ数学041〜立体の切断〜立方体を切った切り口

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中1数学#空間図形#立体図形#立体切断
指導講師: 福田次郎
問題文全文(内容文):
立方体 ABCD-EFGH を 3 点 P,Q,E を通る平面で切ったときの切り口を作図せよ。
※図は動画内参照
この動画を見る 

【考えすぎも悪くない…】文字式:興南高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x+y=-5 $
$ x^2+y^2=17 $
のとき,$ xy $の値を求めなさい.

興南高校過去問
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、$AP=t\ (0 \lt t \lt 3)$を満たす点Pをとる。
中心を$O$とする半径1の円Oが、線分ABと点Pで接しているとする。
$\alpha=\angle OAB,\ \beta=\angle OBA$
とおく。$\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)$を$t$で表すと、
$\tan\alpha=\boxed{あ},\ \tan\beta=\boxed{い},$
$\ \tan(\alpha+\beta)=\boxed{う}$である。
$0 \lt \alpha+\beta \lt \frac{\pi}{2}$であるようなtの範囲は$\boxed{え}$である。
tは$\boxed{え}$の範囲にあるとする。点$A,\ B$から円Oに引いた接線の接点のうち、
Pでないものをそれぞれ$Q,\ R$とすると、$\angle QAB+\angle RBA \lt \pi$である。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと$\ \boxed{お}$である。
また、$t$が$\boxed{え}$の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は$\boxed{か}$である。

2022明治大学理工学部過去問
この動画を見る 

高等学校入学試験予想問題:青山学院高等部~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#文章題#文章題その他#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

0から9までの整数が1つずつ書かれた10枚のカードから3枚を選び,並べて3桁の自然数を作る.
ただし,同じカードは1回しか使えないとする.
百の位より十の位,十の位より一の位の数字が大きくなるような3の倍数はいくつできるか.

$ \boxed{2}$

図のように,1辺の長さが2の正方形$ABCD$と,$QR=6,PR=3,\angle PRQ=90°$の$\triangle PQR$がある.
$ \triangle PQR$は辺$QR$が,正方形$ABCD$は辺$BC$がそれぞれ直線$\ell$上にある.
正方形が$ \ell $にそって矢印の方向に毎秒1の速さで動く.
点$C$と点$Q$が一致している時から$t$秒後の正方形と$ \triangle PQR$が重なった部分の面積を$S$とするとき,次の各場合について$S$を$t$で表せ.
(1)$ 0\leqq t\leqq 2 $のときの$S$の値.
(2)$ 2\leqq t\leqq 4$のときの$S$の値.
(3)$ 4\leqq t\leqq 6$のときの$S$の値.

$ \boxed{3}$

図のように,正四角錐$ A-BCDE$があり,辺$AB$の中点を$M$とする.
底面の正方形$BCDE$の対角線$BD$と$CE$の交点を$F$とすると,$AF=8$cmである.
次の問いに答えよ.
(1)底面の正方形$BCDE$の一辺の長さが$9$cmのとき,対角線$BD$の長さは何cmか.
  また,正四角錐$A-BCDE$の体積は何$cm^3$か.
(2)正四角錐$A-BCDE$を3点$M,C,E$を通る平面で2つに切り分ける.
頂点$B$を含む立体の体積を$V1cm^3$,頂点$B$を含まない立体の体積を$V2cm^3$と
  するとき,$V1$と$V2$の体積比を最も簡単な整数比で表せ.
この動画を見る 

中1数学「比例のグラフの式の求め方」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
比例のグラフの式の求め方に関して解説していきます。
この動画を見る 
PAGE TOP