式の値 慶應女子 B - 質問解決D.B.(データベース)

式の値  慶應女子 B

問題文全文(内容文):
a-c=d-b,abcd=1のとき
(a+b+c-d)(a-b+c+d)(a+b-c+d)(a-b-c-d)

慶應義塾女子高等学校
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
a-c=d-b,abcd=1のとき
(a+b+c-d)(a-b+c+d)(a+b-c+d)(a-b-c-d)

慶應義塾女子高等学校
投稿日:2021.05.04

<関連動画>

【数学】中3-14 式の計算の利用④ 図の証明編

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎縦の長さが$m$、横の長さが$n$の長方形の
まわりに幅のの道がある。道の真ん中を通る線を$ℓ$とするとき、道の面積$S$が$a,ℓ$に等しいことを証明しよう! !
長さはどう表せる?




【証明】
$S$=⑤______
=⑥______(整理)
$ℓ$=⑦______
=⑧______(整理)だから、
$a,ℓ$=⑨__________。
よって$S=a,ℓ$___

◎半径$r$の円形の池のまわりに、 幅$a$の道がある。
道の真ん中を通る線を$ℓ$とするとき、道の面積$S$が$a,ℓ$に等しいことを証明しよう!!
$ℓ$の円の直径は⑩____ で
一番外の円の半径は⑪____ だね。
【証明】
$S$=⑫______
=⑬______(展開)
=⑭______(整理)
$ℓ$=⑮______
=⑯______(整理)だから、
$a,ℓ$=⑰__________。
よって$S=a,ℓ$___
この動画を見る 

【ここは無理せず安全に!】因数分解:江戸川学園取手高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ a^2-4b^2+12bc-9c^2$を因数分解しなさい.

江戸川取手高校過去問
この動画を見る 

【高校受験対策/数学】死守82

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#資料の活用#1次関数#文字と式#平面図形#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守82

①$3-(-6)$を計算しなさい。

②$9÷(-\frac{1}{5})+4$を計算しなさい。

③$\sqrt{28}-\sqrt{7}$を計算しなさい。

④下の図のように、半径が$9cm$、中心角が$60°$のおうぎ形$OAB$があります。
このおうぎ形の弧$AB$の長さを求めなさい。
ただし円周率は$\pi$を用いなさい。

⑤右の表は、A中学校の3年生男子80人の立ち幅とびの記録を度数分布表にまと めたものです。
度数が最も多い階級の相対度数を求めなさい。

⑥関数$y=3x$のグラフに平行で、 点$(0,2)$を通る直線の式を求めなさい。

⑦右の図の四角形$ABCD$において、点$B$と点$Dが$重なるように折ったときにできる折り目の線と
辺$AB$、$BC$との交点をそれぞれ$P,Q$とします。
2点$P,Q$を定規とコンパスを使って作図しなさい。
ただし、点を示す記号$P,Q$をかき入れ、作図に用いた線は消さないこと。
この動画を見る 

【裏技】これ知ってる?

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
たすき掛けの 因数分解 裏技紹介動画です
この動画を見る 

【#3】【因数分解100問】基礎から応用まで!(21)〜(30)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(21)$x^2-4x+4-y^2$
(22)$x^2-y^2+6y-9$
(23)$4a^2-4b^2+4b-1$
(24)$x^2-2xy+y^2-4z^2$
(25)$(x+2)^2+7(x+2)+6$
(26)$(x+y)^2-x-y-12$
(27)$6(x-y)^2-5(x-y)-4$
(28)$(a+b)^2+10c(a+b)+25c^2$
(29)$(x+y+2)(x+y-3)-6$
(30)$(x+2y)(x+2y-2z)-8z^2$
この動画を見る 
PAGE TOP