模試の優先順位:この模試は絶対に受けろ!【篠原好】 - 質問解決D.B.(データベース)

模試の優先順位:この模試は絶対に受けろ!【篠原好】

問題文全文(内容文):
模試の優先順位
「この模試は絶対に受けなければならない理由」についてお話しています。
単元: #全統模試(河合塾)#全統模試(河合塾)#その他#勉強法#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#【河合塾】全統共通テスト模試#【東進】共テ本番レベル模試
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
模試の優先順位
「この模試は絶対に受けなければならない理由」についてお話しています。
投稿日:2021.03.26

<関連動画>

【数学】2024年度第2回高2記述模試全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1) x⁴-5x²+4を因数分解せよ。
(2) 多項式P(x)をx-2で割ると、商がx²+2x+4で、余りが3となるとき、P(x)を求めよ。
(3) kを実数の定数とする。2次関数 y=x²+4x+k の最小値が3であるとき、 kの値を求めよ。
(4) iを虚数単位とする。 i³(2+i) を a+bi (a, bは実数)の形で表せ。
(5) AB=5、BC=6、0°<∠ABC<90°,面積が6√6である三角形ABCにおいて、sin∠ABCの値とCAの長さを求めよ。
(6) 7個の数字1,2,3,4,5,6,7から、異なる3個を選び、それらを並べて3桁の整数を作る。このとき、3桁の整数は全部で何個あるか、また、3桁の偶数は何個あるか。

大問2-1:2次不等式
実数xについての2つの不等式
3x²-11x+6≤0...①
│x-a│<1...②
がある。ただし、aは実数の定数とする。
(1) ①を解け、
(2) a=2のとき、②を解け、
(3) ①かつ②を満たす整数xが、ちょうど2個存在するようなの値の範囲を求めよ。

大問2-2:図形と方程式
xy平面上に、
円C:x²+y²-4x-2y+3=0
直線l:x-2y+a=0
があり、Cの中心をA、半径をrとする。ただし、aは正の定数とする。
(1) Aの座標との値を求めよ。
(2) Cとしが異なる2点で交わるようなの値の範囲を求めよ。
(3) (2)のとき、Cとの異なる2つの交点をP, Qとする、が(2)で求めた範囲を動くとき、三角形APQの面積が最大となるようなaの値を求めよ。

大問3:高次方程式
xの3次式
f(x)=x³-(k+2)x²+(k²+2k-2)x-k³+2k
と、xの3次方程式
f(x)=0...(*)
がある。ただし、kは正の定数とする。
(1) f(k)を求めよ。
(2) k=1のとき、(*)を解け。
(3) (*)が異なる3つの実数解をもつようなんの値の範囲を求めよ。また、そのとき、(*)を解け。
(4) 実数xに対して、x以下の最大の整数を[x]と表す。例えば、[3.5]=3、[2]=2である、(3)のとき、次の条件(#)が成り立つようなkの値の範囲を求めよ。
条件(#): (*)の異なる2解α、βで[α]=[β]を満たすものが存在する。

大問4:確率
数直線上に点Pがある。最初、Pは原点にあり、1枚のコインを1回投げるごとに、表が出たときはPを正の方向に1だけ動かし、裏が出たときはPを負の方向に1だけ動かす。また、Pを初めて正または負の方向に1だけ動かした後、Pが原点に戻るたびに1点を獲得するものとする。
(1) コインを2回投げたとき、Pが原点にある確率を求めよ。
(2) コインを4回投げたとき、
(i) Pが原点にある確率を求めよ。
(ii) 4回目に初めて1点を獲得する確率を求めよ。
(iii) 獲得する点数の合計の期待値を求めよ。
(3) コインを6回投げたとき、1点も獲得しない確率を求めよ。


大問5:三角関数
kを実数の定数とする。以下のような、θの方程式①との不等式②がある。
tan=k...①
2cosθ+1≧0...②
(1) k=1のとき、0≦θ<2πにおいて、①を解け。
(2) 0≦θ<2πにおいて、②を解け。
(3) 0≦θ<2πにおける①の解は2個ある。その2個の解の和が4π/3となるようなんの値を求めよ。
(4) (2)で求めたθの値の範囲における①の解が、2個あるときを考える。その2個の解をα, β(α<β) とする。
(i) kのとり得る値の範囲を求めよ。
(ii) α+β≧7π/4となるようなkの値の範囲を求めよ。

大問6:数列
等差数列{a_n} (n=1,2,3,...) があり、
a₄=28、a₁₀=76
である。また、数列{b_n} (n=1,2,3,...)があり、その一般項は、
b_n=n²-n+2
である。
(1) 数列{a_n}の一般項a_nを求めよ。また、数列{a_n}の初項から第n項までの和S_nを求めよ。
(2) 数列{b_n}の階差数列を{c_n}(n=1,2,3,...) とするとき、数列{c_n}の一般項c_nを求めよ。
(3) (1), (2) で求めたS_n, c_nに対して、次の連立不等式を満たす整数x、yの組(x,y)の個数をA_n(n=1,2,3,...)とする。
1≦x≦c_n、1≦y≦S_n、x²≦y≦4x²
(i) A₂を求めよ。
(ii) A_nを求めよ。
この動画を見る 

【数学】2019年度10月第3回K塾記述模試 Ⅱ型(全問解説 )

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)mを実数の定数とする。xの2次方程式 $x^2-mx+2=0$ …(*)がある。
(i)(*)が異なる2つの実数解をもつようなmの値の範囲を求めよ。
(ii)(*)が0より大きく3より小さい異なる2つの解をもつようなmの値の範囲を求 めよ。
(2)円に内接する四角形ABCDがあり、$AB=1,BC=3,CD=DA,\cos\angle ABC=-\dfrac{1}{3}$ である。
(i)線分ACの長さを求めよ。
(ii)辺CDの長さを求めよ。
(iii)四角形ABCDの面積を求めよ。
(3)$(2x-y)^7$の展開式における$x^2y^5$の係数を求めよ。
(4)不等式$\log_3(3-2x)+\log_{\rac{1}{3}(x+1)\leqq 1$を解け。
(5)等式$f(x)=x^2+\diplaystyle \int_{0\to 1}xf(t)dt$ を満たす関数f(x)を求めよ。

大問2:微積分
aを$0<a<1$を満たす実数とし、xy平面上に 直線$l:y=-x+2a$, 放物線$C:y=x^2-2ax$ がある。
(1)lとCの交点の座標をすべて求めよ。
(2)lのy≧0の部分とCで囲まれる図形の面積をS₁、lとy≦0の部分とC、および直線 x=2で囲まれる図形の面積をS₂とする。
(i)S₁をaを用いて表せ。
(ii)aが$0<a<1$の範囲を動くとき、$S_1+S_2$を最小にするaの値を求めよ。

大問3:確率
赤、白、青のカードがそれぞれ1枚ずつ箱の中に入っている。この箱の中から無 作為に1枚のカードを取り出し、カードの色を紙に記録し、取り出したカードを 箱の中に戻す。これを1回の操作とし、この操作を繰り返す。ただし、同じ色が2 回連続して紙に記録されたときは、それまでの操作によって紙に記録されたもの をすべて消し、次の操作から再び記録し直すこととする。赤、白、青の3色すべ てが紙に記録されたら操作を終了する。また、終了するまでの操作回数をXとする。
例えば、取り出したカードの色が順に赤、白、赤、白、青のとき、最終的に紙に は【赤、白、赤、白、青】と色が記録され、X=5である。 取り出したカードが順に青、赤、赤、赤、白、青のとき、最終的に紙には【赤、 白、青】と色が記録され、X=6である。
(1)X=3,X=4となる確率をそれぞれ求めよ。
(2)X=5となる確率を求めよ。
(3)X=7となる確率を求めよ。

大問4:整数の性質
整数x,yの方程式 $7x-3y=1$ …(*)がある。
(1)(*)の解の組(x,y)を1組求めよ。
(2)(*)の解の組(x,y)をすべて求めよ。
(3)(*)の解の組(x,y)のうち、xyが10の倍数、かつ$1\leqq x\leqq 2020$を満たすものは何組 あるか。

大問5:図形と方程式
xy平面上に 円$Ca:x^2+y^2-4ax-2(a+3)y+5a^2+6a+4=0$がある。ただし、aは実数とする。
(1)Caの中心の座標と半径を求めよ。
(2)aがすべての字数値をとって変化するとき、Caの中心の軌跡を求めよ。
(3)aがa≧1の範囲を動くときのCaの通過する領域をDとし、定点(s,0)とD上の点 (x,y)の距離をLとする。点(x,y)がD上を動くとき、Lの最小値をsを用いて表せ。

大問6:ベクトル
Oを原点とするxyz空間に、2点A(2,0,0)、B(-1,1,1)と 球面$S:x^2+y^2+z^2-2x-4y-8z+11=0$ があり、Sの中心をCとする。
(1)Cの座標を求めよ。また、Sの半径を求めよ。
(2)s,tを実数とし、$OH=sOA+tOB$とおく。CHが平面OABと垂直になるようなs,tの値 を求めよ。 (3)S上に点Pをとり、四面体OABPを作る。PがS上を動くとき、四面体OABPの体積 の最大値を求めよ。また、そのときのPの座標を求めよ。
この動画を見る 

2020年度第4回K塾記述高2模試全問解説 #shorts #K塾模試 #りすうこべつチャンネル

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2020年度第4回K塾記述高2模試全問解説してみた.
この動画を見る 

【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問5_三角関数 (※(*)式に訂正あり)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の整数とする。$\theta$の方程式$ \sin(a\theta)+\sqrt3\cos(a\theta)=1$ ・・・(*) がある。
(1)$\sin(\theta+\dfrac{\pi}{3}$)を$\sin\theta, \cos\theta$の式で表せ。
(2)$a=1$のとき、(*)を$0\leqq\theta\lt 2\pi$において表せ。
(3)(*)の$\theta\geqq 0$を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。$0\leqq\lt 2\pi$において、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
この動画を見る 

【数C】ベクトル:2020年第2回高2K塾記述模試の第7問を解いてみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
この動画を見る 
PAGE TOP