【数学】中3-22 ルートと展開のコラボ - 質問解決D.B.(データベース)

【数学】中3-22 ルートと展開のコラボ

問題文全文(内容文):
$(x+y)^2=$
$(x-y)^2=$
$(x+y) (x-y)=$
$(x+a) (X+b)=$

⑤$(\sqrt{5}-\sqrt{3})^2=$
⑥$(\sqrt{7}+\sqrt{2}) (\sqrt{7}-\sqrt{2}) =$
⑦$(\sqrt{2}+5) (\sqrt{2}+4)=$
⑧$\sqrt{2}(\sqrt{12 }-\sqrt{3}) =$
⑨$(2\sqrt{2}+3) (2\sqrt{2}-3)=$
⑩$(\sqrt{2}+4\sqrt{2})^2=$
11$(4\sqrt{3}-1) (-2\sqrt{3}+3)=$
12$(\sqrt{3}-4) (\sqrt{3}+1) -\sqrt{3}(2-5\sqrt{3}) =$
単元: #数学(中学生)#中3数学#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$(x+y)^2=$
$(x-y)^2=$
$(x+y) (x-y)=$
$(x+a) (X+b)=$

⑤$(\sqrt{5}-\sqrt{3})^2=$
⑥$(\sqrt{7}+\sqrt{2}) (\sqrt{7}-\sqrt{2}) =$
⑦$(\sqrt{2}+5) (\sqrt{2}+4)=$
⑧$\sqrt{2}(\sqrt{12 }-\sqrt{3}) =$
⑨$(2\sqrt{2}+3) (2\sqrt{2}-3)=$
⑩$(\sqrt{2}+4\sqrt{2})^2=$
11$(4\sqrt{3}-1) (-2\sqrt{3}+3)=$
12$(\sqrt{3}-4) (\sqrt{3}+1) -\sqrt{3}(2-5\sqrt{3}) =$
投稿日:2013.05.30

<関連動画>

【高校受験対策/数学】死守72

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#平行と合同#確率#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守72

①$2-6$を計算しなさい。

➁$-3×(-2^2)$を計算しなさい。

③$\frac{2a+b}{ 3 }+\frac{a-b}{ 2 }$を計算しなさい。

④$xy^2×x^2÷xy$を計算しなさい。

⑤$\frac{6}{\sqrt{3}}+\sqrt{15}×\sqrt{5}$を計算しなさい。

⑥2次方程式$x^2+7x-18=0$ を解きなさい。

⑦$a=\sqrt{5}+3$のとき、$a^2-6a+9$の値を求めなさい。

⑧500円、100円、50円の硬貨が1枚ずつある。
この3枚を同時に1回投げるとき、表が出た硬貨の合計金額が500円以下になる確率を求めなさい。
ただし3枚の硬貨のそれぞれについて、表と裏の出方は同様に確からしいとする。

⑨右の図は底面の半径が$3cm$、側面になるおうぎ形の半径が$5cm$の円錐の展開図である。
これを組み立ててできる円錐の体積を求めなさい。
この動画を見る 

【高校受験対策/数学】死守55

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55

①$(-3)^2+2 \times (-5)$を計算しなさい。

②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。

③$(-4xy)^2×(-3x)$を計算しなさい。

④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$

⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。

⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。

②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。

⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。

⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。

⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る 

【3分で不等式が好きになる!】不等式:法政大学第二高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#方程式#平方根#高校入試過去問(数学)#法政大学第二高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 法政大学第二高等学校

【不等式】
$\displaystyle \frac{1}{\sqrt{ n+1 }} \gt \displaystyle \frac{1}{7}$
を満たす正の整数$n$のうち
最も大きいものを答えなさい。
この動画を見る 

平方根とは?  三重高校(改)

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
平方根についてのまとめ
・正の数の平方根は$\bbox[red, 5pt, border:]{}$コある。
この$\bbox[red, 5pt, border:]{}$コの数は$\bbox[green, 5pt, border:]{}$が等しく$\bbox[blue, 5pt, border:]{}$が異なる。
・0の平方根は$\bbox[yellow, 5pt, border:]{}$である。
この動画を見る 

【その場で導け…!】図形:開智高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#円#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
開智高等学校の入試から、図形問題です。

全国の入試問題から、意図が分かりやすい大切な問題に絞って、ひたすら解きまくっていきます。
傾向と対策のために、軽い頭の体操のために、あるいは、時間つぶしのためにどうぞ。
チャンネル登録は、こちらで。
/ @math_shirotan

X、tik tok、Instagramのフォローもお願いします!

#高校受験 #高校入試 #数学

音楽素材:
音楽 → 「たうろんの!成りあ音楽!」
FREE BGM DOVA-SYNDROME
フリー音楽素材 魔王魂

We are introducing the entrance exam questions for Japanese high schools.
It's an important issue for you to understand the basics of mathematics.
Would you like to solve this math problem and check out our commentary?
このコンテンツの作成手段
この動画を見る 
PAGE TOP