【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル - 質問解決D.B.(データベース)

【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル

問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)$GF=tAB$(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)$AB=\sqrt3,AB・AC=-1,AC=\sqrt7$とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)$AH=kAB$(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:20 問題解説(1):内分点はクロス、重心は3つの平均
1:51 問題解説(2-i):始点をそろえる 2:44 問題解説(2-ii):2通りで表して係数比較 4:36 問題解説(3-i):垂直⇔内積=0
6:23 問題解説(3-ii):台形の面積
10:08 名言
10:16 エンディング

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)$GF=tAB$(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)$AB=\sqrt3,AB・AC=-1,AC=\sqrt7$とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)$AH=kAB$(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
投稿日:2021.08.19

<関連動画>

【数Ⅱ】三角関数:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは実数の定数とし、$0\leqq\theta\lt 2\pi$とする。次の2つの式を考える。
$8a\cos\theta- 8\cos2\theta=a^2+7$…①
$\sin\theta-\cos\theta\gt-1$…②
(1)a=1のとき、方程式①を解け。
(2)不等式②を 解け。
(3)(2)で求めた範囲に①の異なる解がちょうど3個存在するようなaの値の 範囲を求めよ。
この動画を見る 

【数A】図形の性質:高3 5月K塾共通テスト 数学IA第5問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABCにおいて、$AB=3,AC=6,\angle BAC=90°$であるとき、$BC=(ア)\sqrt{(イ)}$である。Aを中心とし、Bを通る円をKとし、円Kと直線ACの交点のうち辺AC上にある方をD、もう一方をEとする。また、円Kと直線BCの交点でBと異なるものをFとする。このとき、CE=(ウ)であり、方べきの定理を用いると、$CF=\dfrac{(エ)\sqrt{(オ)}}{(カ)}$とわかるから$\dfrac{BF}{FC}=\dfrac{(キ)}{(ク)}$である。さらに、直線EFと辺ABの交点をP、直線EFと線分BCの交点をQとすると、$\dfrac{BQ}{QD}=(ケ)$であり、△BFQの面積は$\dfrac{(コ)}{(サシ)}$である。また、△CPQの面積は$\dfrac{(ス)}{(セ)}$である。
この動画を見る 

【数Ⅲ】極限:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#全統模試(河合塾)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
初項$2p^2$、公比pの等比数列{$a_n$}がある。ただし、pは実数の定数とする。無限 等比級数$\displaystyle \sum_{n=1}^{\infty}a_n$が収束し、その和が1であるとき、次の問に答えよ。
(1)p の値を求めよ。
(2)母線の長さが1、高さがa[n]の円錐の体積を$V_n$とする。無限 級数$\displaystyle \sum_{n=1}^{\infty}V_n$は収束するか。収束するときはその和を求め、発散するとき はそのことを示せ。
(3)母線の長さが1、高さが$a_n$の円錐の側面積を$T_n$とす る。無限級数$\displaystyle \sum_{n=1}^{\infty}T_n$は収束するか。収束するときはその和を求め、発散 するときはそのことを示せ。
この動画を見る 

2024年度第2回記述模試高3数学解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師:
問題文全文(内容文):
大問1
(1) 袋の中に5枚のコインが入っており、そのうち2枚には両面にAが書かれており、残り3枚には片面にA、もう一方の面にBが書かれている。
(ⅰ)袋から無作為にコインを1枚選び、選んだコインを投げたとき、Aが書かれた面が上になる確率を求めよ。
(ⅱ)袋から無作為にコインを1枚選び、選んだコインを投げたとき、Aが書かれた面が上になった。このとき、下の面にもAが書かれている確率を求めよ。
(2) 多項式$(x-1)^{99}$を$x^2$で割った時の余りを求めよ。また、整数$99^{99}$を10000で割った時の余りを求めよ。
(3) $12^{12}$の桁数を求めよ。
(4)$\displaystyle z=\frac{-\sqrt{3}+i}{1+i}$とする。
(ⅰ)zを極形式で表せ。
(ⅱ)nを正の整数とする。$z^n$が実数となるような最小のnを求めよ。

大問2
 数列${a_n}$の初項$a_1$から第n項$a_n$までの和を$S_n$、数列${b_n}$の初項$b_1$から第n項$b_n$までの和を$T_n$をとするとき
$a_1=2、b_1=0、a_{n+1}=2T_n+2、b_{n+1}=2S_n$ が成り立つ。
(1) $a_2、b_2$を求めよ
(2) $a_{n+1}、b_{n+1}$を$a_n、b_n$を用いて表せ。
(3) 一般項$a_n$を求めよ。

大問3
 aは実数の定数とし、関数f(x)を
$f(x)=e^{-x}(a-sinx-cosx) (0<x<2π)$により定める。
(1)f(x)が極値を持つとき、aの値の範囲を求めよ。
(2)f(x)が極値を2つ持つときを考える。極値の積が負となるとき、aの値の範囲を求めよ。また、極値の積が$\displaystyle \frac{-e^{-3π}}{2}$となるときのaの値を全て求めよ。

大問4
AB=1、AC=3、BC=$2\sqrt{3}$である三角形ABCがある。$\overrightarrow{AB}=\vec{b}、\overrightarrow{AC}=\vec{c}$とする。
(1) 内積$\vec{b}・\vec{c}$の値を求めよ。
(2) s,tを実数とし、$\overrightarrow{AP}=s\vec{b}+t\vec{c}$とする。AB⊥BP、AC⊥CPであるとき、s,tの値を求め、さらに|$\overrightarrow{AP}$|を求めよ。
(3)点Qが三角形ABCの外接円上を動くとき、三角形BCQの面積を最大にするQを$Q_0$とする。$\overrightarrow{AQ_0}$を$\vec{b},\vec{c}$を用いて表せ。

大問5
 $0≦x<π$において定義された関数
$f(x)=\displaystyle \frac{2sinx}{1+cosx}、g(x)=\frac{\sqrt{3}}{1+cosx}$ 
があり、曲線y=f(x)を$C_1$、曲線y=g(x)を$C_2$とする。
(1) $C_1、C_2$の共有点のx座標を求めよ
(2)(ⅰ)不定積分$\int f(x)dx$を求めよ
(ⅱ)$tan\frac{2}{x}$の導関数をcosxを用いて表せ
(3)$C_1、C_2$およびy軸の3つで囲まれる部分の面積を$S_1$とし、$C_1$と$C_2$で囲まれる部分の面積を$S_2$とする。$S_1$と$S_2$の大小を比較せよ。ただし、自然対数の底eについて、2.7<e<2.8であることは用いてよい。

大問6
正の整数Nを3で割った時の余りは2である。
(1)正の整数a,bを3で割った時の余りをそれぞれ$r_a、r_b$とする。ab=Nが成り立つとき、$r_a、r_b$の組をすべて求めよ。
(2)Nの正の約数の総和を3で割った時の余りを求めよ。
(3)Nの正の約数の逆数の総和を$\displaystyle \frac{q}{p}$(ただし、pとqはともに正の整数で最大公約数は1である)と表したとき、qは3の倍数であることを示せ。
この動画を見る 

【数Ⅱ】高2生必見!! 2019年8月 第2回 K塾高2模試 大問3_式と 証明・複素数と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bを実数定数とする。xの方程式 $x^3+(1-a)x^2+3x+b=0$・・・(*) は$x=-1$を解にもつ。
(1)bをaを用いて表せ。
(2)$a=1$のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解を$\alpha,\beta$とする。 $f(x)=x^2+cx+d$ (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) $f(α)=\dfrac{1}{\beta} f(\beta)=\dfrac{1}{\alpha} f(-1)=-1$
この動画を見る 
PAGE TOP