【数検2級】数学検定2級2次 問題3 - 質問解決D.B.(データベース)

【数検2級】数学検定2級2次 問題3

問題文全文(内容文):
問題3.(選択)
 xy平面上において、点Pが円$x^2+y^2=4$上を動くとき、点A(3,1)と点Pを結ぶ線分APの中点Qの軌跡を求めなさい。
チャプター:

0:00 問題3について
0:34 解説
1:44 解き方の手順
4:56 まとめ

単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題3.(選択)
 xy平面上において、点Pが円$x^2+y^2=4$上を動くとき、点A(3,1)と点Pを結ぶ線分APの中点Qの軌跡を求めなさい。
投稿日:2023.02.18

<関連動画>

【数検3級】数学検定3級2次 問題1・2

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1.右の図は、縦の長さがa ㎝、横の長さがb ㎝の長方形と、1辺の長さがc ㎝の正方形です。次の問いに答えなさい。
(1) 長方形の周の長さを、a、b を用いて表しなさい。
(2) 長方形の面積の2倍と正方形の面積を合わせた面積は150 ㎝²未満です。この数量の関係を表した式はどれですか。
下の①~⑥の中から1つ選びなさい。
   ①$2ab+c^2\gt 150$ ②$2ab+c^2\geqq 150$ ③$2ab+c^2\lt 150$  
   ④$2ab+c^2\leqq 150$  ⑤a^2b^2+c^2\lt 150$  ⑥$a^2b^2+c^2\leqq 150$
 
問題2.底面が1辺8㎝の正方形で、高さが6㎝の2つの正四角錐があります。右の図の八面体ABCDEFは、この2つの正四角錐を
ぴったり合わせたものです。次の問いに答えなさい。
(3) 辺CDとねじれの位置にある辺はどれですか。すべて答えなさい。
(4) この八面体の体積は何㎝³ですか。単位をつけて答えなさい。
この動画を見る 

【数検準2級】高校数学:数学検定準2級2次:問6

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#確率#数学検定#数学検定準2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問6. AチームとBチームが野球の試合を行います。どの試合も、AチームがBチームに勝つ確率は1/3で、引き分けはないものとします。
これについて、次の問いに答えなさい。
(8) 3試合めまで終えた時点でAチームが3勝0敗となる確率を求めなさい。この問題は答えだけを書いてください。
(9) 5試合めまで終えた時点でAチームが3勝2敗となる確率を求めなさい。
この動画を見る 

20年5月数学検定1級1次試験(四面体の体積)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
4点$A(1,-4,1),B(2,2,2),C(2,-6,-3),D(3,-2,-1)$とする.
四面体$ABCD$の体積$V$を求めよ.

$a=\left(\begin{eqnarray}
a_1 \\\
a_2 \\\
a_3
\end{eqnarray}\right)$

$a=\left(\begin{eqnarray}
b_1 \\\
b_2 \\\
b_3
\end{eqnarray}\right)$

$a=\left(\begin{eqnarray}
c_1 \\\
c_2 \\\
c_3
\end{eqnarray}\right)$

20年5月数学検定1級1次試験(四面体の体積)過去問
この動画を見る 

【数検2級】数学検定2級 問題4~問題8

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題4. 2次関数$y=x^2+4x+a$の最小値が1となるように、定数aの値を定めなさい。
問題5. $0°\leqq\theta\leqq 180°$とします。$\tan\theta=\dfrac{1}{2}$のとき、$\cos\theta$の値を求めなさい。
問題6. 3個のさいころを同時に振るとき、3個とも異なる目が出る確率を求めなさい。ただし、さいころの目は1から6まであり、どの目も出る確率は等しいものとします。
問題7. 2進法で表された数$1011010_{(2)}$を10進法で表しなさい。
問題8. 次の計算をしなさい。$\dfrac{x+1}{x+2} -\dfrac{x+2}{x+3}$
この動画を見る 

【数検2級】高校数学:数学検定2級2次:問題2

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#確率#数学検定#数学検定2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題2.(選択)
 nを0以上の整数とします。点P,Qは正四面体ABCDの頂点の上を,次の条件①,②に従って移動するものとします。
 ① 最初,点Pは頂点A,点Qは頂点Bにいる。
 ② 点Pと点Qは独立して1秒ごとに現在位置から他の3つの頂点のいずれかにそれぞれ1/3の確率で移動する。
 移動を始めてからn秒後に点Pと点Qが同じ頂点にいる確率をPnとするとき,P₁,P₂,P₃をそれぞれ求めなさい。
この動画を見る 
PAGE TOP