問題文全文(内容文):
$\angle C=90°$ である直角三角形ABCにおいて,$\angle A=\theta, AB=k$ とする。頂点Cから辺ABに下ろした垂線を CD とするとき,次の線分の長さを$k,\theta$を用いて表せ。(1) $BC$ (2) $AC$ (3) $AD$ (4) $CD$ (5) $BD$
$\angle C=90°$ である直角三角形ABCにおいて,$\angle A=\theta, AB=k$ とする。頂点Cから辺ABに下ろした垂線を CD とするとき,次の線分の長さを$k,\theta$を用いて表せ。(1) $BC$ (2) $AC$ (3) $AD$ (4) $CD$ (5) $BD$
チャプター:
0:06 解説開始!まずは問題整理
0:31 問題作図開始!
1:45 木の根っこに名前を付ける!
2:09 木の高さをx[m]とおく!
2:19 BHの長さを出す!
3:25 △PBHの形を考える!
4:24 ラスト!xの長さを求める!
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\angle C=90°$ である直角三角形ABCにおいて,$\angle A=\theta, AB=k$ とする。頂点Cから辺ABに下ろした垂線を CD とするとき,次の線分の長さを$k,\theta$を用いて表せ。(1) $BC$ (2) $AC$ (3) $AD$ (4) $CD$ (5) $BD$
$\angle C=90°$ である直角三角形ABCにおいて,$\angle A=\theta, AB=k$ とする。頂点Cから辺ABに下ろした垂線を CD とするとき,次の線分の長さを$k,\theta$を用いて表せ。(1) $BC$ (2) $AC$ (3) $AD$ (4) $CD$ (5) $BD$
投稿日:2023.05.09