解けなきゃヤバい基本力!?さあ、あなたは解けますか?【中学受験算数】 - 質問解決D.B.(データベース)

解けなきゃヤバい基本力!?さあ、あなたは解けますか?【中学受験算数】

問題文全文(内容文):
下図の正三角形ABCで、点Qは辺ACの真ん中の点です。辺BC上にAP+PQが
最短となる点Pをとりました。
三角形QPCの面積が7㎠のとき、三角形ABCの面積は?(BP>PC)
*図は動画内参照
単元: #算数(中学受験)#平面図形#角度と面積
指導講師: こばちゃん塾
問題文全文(内容文):
下図の正三角形ABCで、点Qは辺ACの真ん中の点です。辺BC上にAP+PQが
最短となる点Pをとりました。
三角形QPCの面積が7㎠のとき、三角形ABCの面積は?(BP>PC)
*図は動画内参照
投稿日:2023.08.30

<関連動画>

これ説明して

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#数学(中学生)#中1数学#中2数学#中3数学#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2$\div \displaystyle \frac{1}{2}$
この動画を見る 

計算達人「計算の順番変え」小学4年生~6年生対象【毎日配信】

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
計算の順番変えに関して解説していきます。
この動画を見る 

2023年豊島岡女子学園中学校算数「売買損益」

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#文章題#売買損益と食塩水#豊島岡女子学園中学
指導講師: 重吉
問題文全文(内容文):
【売買損益】
(1)仕入れ値を①とすると、5割増しの定価は、
  定価:①$\times (1+$____)=〇
  売り値は、定価の2割引きなので、
  売り値:$○ \times(1-$____)=〇$\times$ ____=〇
  「売り値-仕入れ値=利益」より
  〇-〇=____円
  〇=____円
  仕入れ値①=____円$\div$____=____円


(2)定価は、仕入れ値120円の5割増しなので、
  定価:____$\times (1+$____) = ____ $\times$ ____ = ____円
  よって、定価で1個売れた場合の利益は、
  ____円 - ____円 = ____円なので、定価で____個売れた分の利益は、
  ____円$\times$____個=____円
  全体の利益は、43,800円なので、2割引きの値段で売った分の利益は、
  ____ - ____ = ____円


定価____円の2割引きの売り値は、____円$\times(1-$____)= ____円$\times$____ = ____円
値引き価格で1個売れた場合の利益は、____円 - ____円 = ____円
よって、2割引きで売れた個数は、____ ÷ ____ = ____個
仕入れ数=定価で売れた分+値引き分=____個 + ____個 = ____個
この動画を見る 

【小6算数手元解説】出発して25分経ったときに速さを落とした。【問題文は概要欄】

アイキャッチ画像
単元: #算数(中学受験)#速さ#旅人算・通過算・流水算#速さその他
教材: #マスターテキスト#中学受験教材#小6 サマーサポート
指導講師: 理数個別チャンネル
問題文全文(内容文):
P地点からQ地点へ向かってA君が毎時4kmの速さで出発しました。出発して25 分経ったときに速さを毎時3kmに落としたため、Q地点に着くのが予定よりも5分おくれました。このとき、P, Q両地点間の距離を求めなさい。
この動画を見る 

【高校受験対策】数学-死守21

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#円#文章題#文章題その他#立体図形#体積・表面積・回転体・水量・変化のグラフ#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$7-(-5)$を計算しなさい.

②$(- 4) ^ 2 + 3 \times (- 2)$を計算しなさい.

③$\dfrac{3}{2} - 6y - \dfrac{1}{4} (3x-8y)$を計算しなさい.

④比例式$ 2:5 = (x - 2):(x + 7)$をみたす$x$の値を求めなさい.

⑤$\sqrt{45} - \sqrt{20} + \dfrac{15}{\sqrt5}$ を計算しなさい.

⑥$(x + 1)(x - 7) - 20$を因数分解しなさい.

⑦$a$の本の鉛筆を,$b$人の子どもに1人7本ずっ配ると3本余るとき,
$b$を$a$の式で表しなさい.

⑧ 右の図で,5点$A,B,C,D,E$は円$O$の円周上にあり,
$\angle BAC = 24°,\angle CED = 38°$,
$\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$である.
線分$BD$と線分$CE$の交点を$F$とするとき,$\angle CFD$の大きさを求めなさい.

⑨下の表には,6人の生徒$A~F$のそれぞれの身長から,
160cmをひいた値が示されている/
この表をもとに,これら6人の生徒の身長の平均を求めたところ161.5cmであった.
このとき,生徒$F$の身長を求めなさい.

⑩半径が3cmの球と体積の等しい円柱がある.
この円柱の底面の半径が4cmのとき,円柱の高さを求めなさい.

図は動画内参照
この動画を見る 
PAGE TOP