連立方程式 - 質問解決D.B.(データベース)

連立方程式

問題文全文(内容文):
これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
zx-z-x=19 \\
yz-y-z=14 \\
xy-x-y=11 \\
\end{array}
\right.
\end{eqnarray}$
単元: #連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
zx-z-x=19 \\
yz-y-z=14 \\
xy-x-y=11 \\
\end{array}
\right.
\end{eqnarray}$
投稿日:2021.12.17

<関連動画>

【高校受験対策/数学】死守-96

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#比例・反比例#確率#2次関数#相似な図形#円#文字と式#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守96

①$7+2×(-6)$を計算せよ。
②$3(2a+b)-2(4a-5b)$を計算せよ。
③$\frac{14}{\sqrt2}-\sqrt32$を計算せよ。
④2次方程式$(x+6)(x-5)=9x-10$を解け。
⑤関数$y=\frac{1}{2}x^2$について、$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めよ。
⑥関数$y=\frac{ 6 }{ x }$のグラフをかけ。
⑦$△ABC$において、$\angle A=90°,AB=6cm,BC=10cm$のとき、辺$AC$の長さを求めよ。

⑧4枚の硬質A、B、C、Dを同時に投げるとき、少なくとも1枚は表が出る確率を求めよ。
ただし、表と裏が出ることは同様に確からしいとする。

⑨右図のように、円$0$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、$△ABC$をつくる。
線分$BO$を延長した直線と線分$AC$と交点を$D$とする。
$\angle BAC=48°$のとき$\angle ADB$の大きさを求めよ。
この動画を見る 

連立方程式 法政一

アイキャッチ画像
単元: #連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
1042x + 347y = 2 \\
1652x + 551y = -2
\end{array}
\right.
\end{eqnarray}
法政大学第一高等学校
この動画を見る 

文字4つの連立方程式 國學院久我山

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式
$
\begin{eqnarray}
\left\{
\begin{array}{l}
w+x + 2y+z = 1 \\
w-2x + y -z= -2
\end{array}
\right.
\end{eqnarray}
$
w,x,y,zのうち0でないものは1つだけであるときw,x,y,zを求めよ
この動画を見る 

連立方程式の応用問題を難なく解く動画~全国入試問題解法 #shorts #数学 #高校受験 #過去問

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=14 \\
ax+by=3
\end{array}
\right.
\end{eqnarray}$

$ \begin{eqnarray}
\left\{
\begin{array}{l}
bx-ay=-5 \\
4x-5y=11
\end{array}
\right.
\end{eqnarray}$
の解が一致するとき,$ a,b $の値をそれぞれ求めなさい.

巣鴨高校過去問
この動画を見る 

【数学】中2-16 連立方程式③ 加減法の応用編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
係数が揃っていないなら①____算使って揃えちゃえばいい!

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+2y=3 \\
2x-3y=-22
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
3x-2y=-8 \\
7x+4y=-10
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=3 \\
3x+5y=7
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=-19 \\
5x+4y=10
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP