問題文全文(内容文):
①(1.2)(-3.4)を通る直線。
②傾きが1で、(-3.2)を通る直線。
③(-1.2)を通り、$y=3x+5$に平行な直線。
④変化の割合が$\displaystyle \frac{1}{2}$で、(8,0)を通る直線。
⑤(8,-1)を通り、xの増加量が4のとき、yの増加量が-3である直線。
⑥$x=-2$のとき$y=6$、$x=6$のとき$y=-14$である直線。
①(1.2)(-3.4)を通る直線。
②傾きが1で、(-3.2)を通る直線。
③(-1.2)を通り、$y=3x+5$に平行な直線。
④変化の割合が$\displaystyle \frac{1}{2}$で、(8,0)を通る直線。
⑤(8,-1)を通り、xの増加量が4のとき、yの増加量が-3である直線。
⑥$x=-2$のとき$y=6$、$x=6$のとき$y=-14$である直線。
単元:
#数学(中学生)#中2数学#1次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①(1.2)(-3.4)を通る直線。
②傾きが1で、(-3.2)を通る直線。
③(-1.2)を通り、$y=3x+5$に平行な直線。
④変化の割合が$\displaystyle \frac{1}{2}$で、(8,0)を通る直線。
⑤(8,-1)を通り、xの増加量が4のとき、yの増加量が-3である直線。
⑥$x=-2$のとき$y=6$、$x=6$のとき$y=-14$である直線。
①(1.2)(-3.4)を通る直線。
②傾きが1で、(-3.2)を通る直線。
③(-1.2)を通り、$y=3x+5$に平行な直線。
④変化の割合が$\displaystyle \frac{1}{2}$で、(8,0)を通る直線。
⑤(8,-1)を通り、xの増加量が4のとき、yの増加量が-3である直線。
⑥$x=-2$のとき$y=6$、$x=6$のとき$y=-14$である直線。
投稿日:2013.07.22