【中1 数学】中1-71 作図③ ~さらに応用編~ - 質問解決D.B.(データベース)

【中1 数学】中1-71 作図③ ~さらに応用編~

問題文全文(内容文):
①長方形ABCDにおいて、頂点Bが頂点Dに重なるように折るとき、折り目の線分を作図しよう!

②2点A,Bから等しい距離にあり、かつ点Cに最も近い点Pを作図しよう!

③$\angle AOC$の二等分線OPと$\angle BOC$の二等分線OQを作図しよう!

④③のように作図したとき$\angle POQ$は何度?
※図は動画内参照
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①長方形ABCDにおいて、頂点Bが頂点Dに重なるように折るとき、折り目の線分を作図しよう!

②2点A,Bから等しい距離にあり、かつ点Cに最も近い点Pを作図しよう!

③$\angle AOC$の二等分線OPと$\angle BOC$の二等分線OQを作図しよう!

④③のように作図したとき$\angle POQ$は何度?
※図は動画内参照
投稿日:2013.12.04

<関連動画>

【中1 数学】  1-③③ 方程式の利用⑤ (長イス編)

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中1 数学 方程式の利用⑤ (長イス編)
以下の問題に答えよ。
①長イスにすわるのに、
4人ずつすわると15人がすわれず、
6人ずつすわると最後のいすにすわるのが1人だけ。
長イスと生徒は?
※図は動画内参照
この動画を見る 

証明:沖縄県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#平行と合同#相似な図形#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 沖縄県の高校

$\triangle AOE \equiv \triangle COF$となる
ことを証明しなさい。

点O:対角線$AC$、$BD$の交点 (平行四辺形$ABCD$)
点E:辺$AB$上の点
点F:直線$EO$と辺$CD$との交点
※根拠となることがらを必ず書くこと!
※図は動画内参照
この動画を見る 

【中学数学】比例と反比例:変域(何で大小が変わるの?)

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x<2$のとき、$y=-3x$の$y$の取りうる範囲は?
この動画を見る 

factorization : Shirotan's cute kawaii math show #Math #exam #questions #brainteasers #study

アイキャッチ画像
単元: #数学(中学生)#相似な図形#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$x^2-\boxed{  }x+14$が$(x-a)(x-b)$の形に因数分解できる。
$\boxed{  }$に当てはまる自然数を二つ書け。
この動画を見る 

【高校受験対策】数学-死守31

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#確率#2次関数#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$13 + 3\times (- 6)$を計算せよ。

②$3(2a + 3) - 2(5a + 4)$ を計算せよ。

③$a = - 3 , b = 4$とき、$3a^2-5b$の値を求めよ。

④$\dfrac{30}{\sqrt5}+\sqrt{20}$を計算せよ。

⑤ 1次方程式$3x-8=7x+16$を解け。

⑥2次方程式$(x + 1) ^ 2 = x + 13$を解け。

⑦関数$y =\dfrac{2}{3}x^2$について、
$x$の変域が$-1\leqq x \leqq 3$のときの$y$の変域を求めよ。

⑧$\boxed{1},\boxed{3},\boxed{5},\boxed{7},\boxed{9}$のカードが1枚ずつある。
この5枚のカードから、同時に2枚のカードを取り出すとき、
その2枚のカードにかかれている数の和が10以上になる確率を求めよ。
ただし、どのカードを取り出すことも同様に確からしいものとする。

⑨右の表は、A中学校とB中学校の生徒を対象に、
携帯電話やスマートフォンの1日あたりの使用時間を調査し、
その結果を度数分布表に整理したものである。
この表をもとに、A中学校とB中学校の「0時間以上1時間未満」の階級の相対度数のうち、
大きい方の相対度数を四捨五入して小数第2位まで求めよ。

図は動画内参照
この動画を見る 
PAGE TOP